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Introduction

In healthy or disabled individuals, Brain-Computer Interface (BCI) 
systems can send instructions, operated by brain activity, to external 
gadgets without the use of a neuro-muscular system [1, 2]. Differ-

ent types of BCI systems are categorized according to the brain activity 
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ABSTRACT
Background: The P300 signal, an endogenous component of event-related poten-
tials, is extracted from an electroencephalography signal and employed in Brain-com-
puter Interface (BCI) devices. 
Objective: The current study aimed to address challenges in extracting useful fea-
tures from P300 components and detecting P300 through a hybrid unsupervised man-
ner based on Convolutional Neural Network (CNN) and Long Short-term Memory 
(LSTM).
Material and Methods: In this cross-sectional study, CNN as a useful method 
for the P300 classification task emphasizes spatial characteristics of data. However, 
CNN and LSTM networks are combined to modify the classification system by ex-
tracting both spatial and temporal features. Then, the CNN-LSTM network was trained 
in an unsupervised learning method based on an autoencoder to improve Signal-to-
noise Ratio (SNR) by extracting main components from latent space. To deal with 
imbalanced data, an Adaptive Synthetic Sampling Approach (ADASYN) is used and 
augmented without any duplication. 
Results: The trained model, tested on the BCI competition III dataset, including 
two normal subjects, with an accuracy of 95% and 94% for subjects A and B in P300 
detection, respectively.  
Conclusion: CNN-LSTM, was embedded into an autoencoder and introduced to 
simultaneously extract spatial and temporal features and manage the computational 
complexity of the method. Further, ADASYN as an augmentation method was pro-
posed to deal with the imbalanced nature of data, which not only maintained feature 
space as before but also preserved anatomical features of P300. High-quality results 
highlight the suitable efficiency of the proposed method.
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measurement method, such as Near Infrared 
Spectroscopy (NIRS) [3], Electroencephalog-
raphy (EEG) [4], and Magnetoencephalog-
raphy (MEG) [5]. EEG-based BCIs [6] are 
considered the most popular method due to 
some advantages, such as ease of use, non-
invasiveness, and low cost. Some studies have 
been conducted on P300-based BCIs, a well-
known type of EEG-based BCIs, to modify the 
performance [7]. 

Event-related Potentials (ERPs) are a type of 
EEG signal, generated after specific stimula-
tion, and P300 as one of the most important 
components of ERP signals, is a positive de-
flection elicited approximately 300-1000 ms 
after auditory, somatosensory, or visual stim-
ulation [6, 8, 9]. Anatomically, P300 is more 
elicited over the midline scalp, and its magni-
tude increases from the frontal to the parietal 
lobe [10].

Steps in setting up a P300-based BCI sys-
tem include user tasks, EEG signal recording, 
signal pre-processing, feature extraction and 
translation, signal classification, and feed-
back to the user interface [11]. The user task 
is critical for the occurrence of the P300 sig-
nal, and a well-designed user task not only 
provides a strong P300 signal response with a 
short delay duration but also protects the sub-
ject against eye fatigue [12]. After designing a 
suitable task, EEG signals are recorded, which 
required preprocessing procedures, such as 
noise reduction and artifact removal. In the 
feature extraction stage, the most useful and 
meaningful features are extracted from the 
data, and the dimensionality reduction tech-
nique is performed if needed. Finally, a proper 
classifier is used to elicit the P300 wave [13] 
in the signal classification step based on the 
obtained features. The created command must 
then be returned to the user. Typically, crite-
ria, such as accuracy and time of detection, are 
applied to assess the overall performance of a 
P300-based BCI system [14].

Farwell and Donchin introduced a well-
known P300-based BCI [15], which produces 

P300 based on the oddball paradigm. They 
also generated a speller matrix composed of 
a 6×6 matrix of symbols. Each time, a row or 
column is randomly intensified for a short time 
until each column and row has been intensi-
fied once. The user selects the target stimuli 
by a specific symbol as well as counting the 
flashing of the row and column that intersect 
at that desired character [16].

The most important obstacles in P300 detec-
tion are considered variability and low SNR 
[17-19]. Differentiating P300 from other ERP 
components is a major goal of many studies 
in this field [20]. Some studies have focused 
on this field for P300 classification because 
of the noticeable performance of deep learn-
ing methods [21]. Accordingly, deep-learning 
approaches are firstly surveyed, and conven-
tional methods are also reviewed in the P300 
detection studies.

A deep belief network was utilized for P300 
classification with an accuracy of 91% on a da-
taset of 9 subjects [22]. Kshirsagar et al. [23] 
collected data on 10 subjects with 8 channels 
of EEG signal to classify P300 in Devana-
gari script using deep learning methods. They 
used autoencoder and CNN with an accuracy 
of 95.82%. Mingfei Liu et al. [24] proposed a 
deep learning method based on batch normal-
ization for P300 detection on the BCI compe-
tition III dataset; a total of 79.09% accuracy 
for subject B was the best score among ac-
quired results. A deep learning method based 
on deep belief networks was applied for P300 
detection again on the BCI competition III da-
taset with an accuracy of 86.4% for subject B 
as the best result was reported [25]. A simple 
CNN was used, and an accuracy of 86.4% was 
achieved for the classification of P300 on the 
BCI competition III dataset [26].

Data were collected from the Fz, Cz, and Pz 
channels of 15 subjects, and different pipelines 
were examined for feature extraction plus clas-
sification, in which Bayesian linear discrimi-
nant analysis with 72.13% accuracy showed 
the best performance [27]. A method based on 
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regularized group sparse discriminant analy-
sis in [28] on Pz, Cz, and P8 channels of the 
BCI competition III dataset was implemented, 
with an accuracy of 90.00%. A combination of 
optimization and pattern recognition methods 
was used for P300 detection, tested on five 
datasets, with an accuracy of 96.70% as the 
best performance [29]. The decision tree was 
used as a classifier on an open dataset from an 
expert psychologist association, with an accu-
racy of 99.68% obtained [30].

This study introduces a method to extract 
spatial and temporal features as two main 
types of P300 component features by apply-
ing the Convolution Long-Short Term Mem-
ory AutoEncoder (CLSTM-AE), which is a 
combination of CNN for spatial and LSTM 
for temporal feature extraction. Also, an auto-
encoder was used as an unsupervised learning 
approach to reduce the time complexity and 
information redundancy of the method.

Material and Methods
In this cross-sectional study, a deep learning 

method was proposed based on both CNN and 
long short-term memory to extract efficient 
spatial and temporal features for P300 detec-
tion. A new method of augmentation was also 
used to deal with the imbalanced nature of the 
P300 dataset based on the Adaptive Synthetic 
Sampling Approach (ADASYN). The accu-
racy, sensitivity, recall, and F1-Score were 
considered to evaluate the performance of the 
proposed models.

Dataset and pre-processing
The brain signals were recorded according 

to the BCI P300 speller system. The P300 
speller is based on the so-called oddball para-
digm, showing that uncommon expected in-
puts cause a positive deflection in the EEG af-
ter about 300 ms, called the P300 component. 
Farwell and Donchin [15] established a P300 
speller based on this paradigm by develop-
ing a protocol, in which a subject is presented 
with a 6×6-character matrix, as displayed in 

Figure 1. For the spelling of a single character, 
each of the matrix’s 12 rows and columns is 
then intensified in a random sequence (in the 
sequel, we refer to such a collection of 12 in-
tensifications as a series). The participant was 
instructed to focus on the character they prefer 
to spell, in which an EEG P300-evoked po-
tential appears in response to the intensifica-
tion of a row or column containing the desired 
character. This series of intensifications is re-
peated 15 times for each character to cause 
the spelling method more reliable. The data-
set for this competition, which is available on 
the competition homepage (https://www.bbci.
de/competition/iii/), was collected from two  
distinct subjects.

Before digitalization at 240 Hz, signals were 
bandpass filtered from 0.1 to 60 Hz [15]. The 
dataset was described in further detail in the 
BCI competition [30]. The classification of 
problems addressed is as follows: After stimu-
lation and recording a 64-channel EEG signal 
for each subject, we wish to predict whether 
or not such a signal has a P300 component. 
Therefore, from the raw signal, a period of 
1000 ms after stimulation was extracted. Most 
informative channels for each subject were 
then selected, including seven channels (Fz, 
Cz, Pz, C3, C4, PO7, and PO8) for subject A, 
and eight channels (Cz, C2, C3, T8, FC4, F2, 
F4, and F8) for subject B. According to the 

Figure 1: P300 Speller Matrix
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structure of the spelling matrix, only one-sixth 
of the recorded signals contain P300 (one row 
and one column from all 12 rows and col-
umns), resulting in severely imbalanced sam-
ple sizes of P300 and non-P300 (nP300) data. 
In this case, the binary classification is prone 
to biasing towards nP300 samples.

Different types of augmentation methods 
were evaluated to address severely imbal-
anced sample sizes of P300 and non-P300 
(nP300) data; firstly, random oversampling, as 
a simple method was implemented, the nature 
of this procedure is rather random. Although 
this method preserves the P300 structure and 
feature space, it merely copies the samples of 
the preliminary dataset, resulting in overfit-
ting (Figure 2-I). To overcome this problem, 
other augmentation methods were applied 
based on synthetic sampling (SMOTE). As the 
basic one, random SMOTE (Figure 2-II) was 
applied. However, random SMOTE does not 
suffer from copying preliminary dataset sam-
ples, the output can be completely changed 
in each run because of its random nature. A 
version of SMOTE was used based on Sup-
port Vector Machine (SVM), whose random 
part is restricted to support vector samples  
(Figure 2-III) to control the random char-
acteristics. In this method, augmentation is 
just applied on support vector samples with 
a substantial effect on P300 structure and dis-
tribution of features in comparison with prim-
itive feature space. To overcome this chal-
lenge ADASYN was employed as a method,  
focusing on low-density parts of the data to 
synthesize new samples. However, ADASYN 
not only does not duplicate the existing dataset 
samples but also preserves the feature space as 
before. Further, the outputs of this method do 
not change in each run. Details of ADASYN 
are described in depth in [31]. P300 forma-
tion and feature space distribution before and 
after ADASYN augmentation are shown in  
Figure 2-IV. The proposed ADASYN aug-
mentation method has presented a better re-
sult compared to other augmentation methods,  

depicted in Figure 2, such as SVM SMOTE 
and random SMOTE.

The signal was sent through a bandpass 
Chebyshev filter with a cut-off frequency of 
0.1-20 Hz to remove undesirable frequencies, 
and after all baselines were drifted. When the 
P300 component is extracted from the raw sig-
nal, each channel signal is a one-dimensional 
vector with a length of 240 samples, corre-
sponding to the sampling frequency rate. All 
channels are cascaded along each other in a 
larger one-dimension signal to form each seg-
ment of data, as indicated in Figure 3a. The 
channels were transposed and then arranged 
behind each other as the frames of a video to 
prepare the data for the CLSTM-AE model  
(Figure 3b). Before augmentation, 20% of data 
from each class (750 P300 and 750 nP300) 
was selected as test data, and the remaining 
(1700 P300 and 12000 nP300) was augmented 
as train data in such a way that the two classes 
were balanced after augmentation. Only 20% 
of the training data was used for validation, 
while the remaining 80% was used for training 
of CLSTM-AE. The amount of data in each 
train, test, and validation group is mentioned 
in Table 1.

Method
The historical information is transmitted 

through a Recurrent Neural Network (RNN) 
procedure via the chain network structure. The 
RNN can learn long-term knowledge, but the 
growth of the vacant distance between the two 
memory units may cause memory deteriora-
tion and gradient vanishing. Hochreiter and 
Schmidhuber [32] attempted to solve the prob-
lem. The LSTM network was suggested for 
time series forecasting, considering the gate 
mechanism and controlling memory infor-
mation using three separate gates’ functions. 
The internal portion of the LSTM utilizes a 
nearly complete linkage, causing an issue of 
duplication of information. The LSTM sole-
ly takes into account temporal connections 
and disregards the spatial correlation within 
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I.(a)

II. (a)

III. (a)

IV. (a)

Figure 2: (a) A sample P300 signal structure before and after augmentation, (b) Feature space 
before and after augmentation in different methods: I. random oversampling, II. SMOTE, III. 
SMOTE based on SVM, IV. ADASYN.  
(SMOTE: Synthetic Sampling, SVM: Support Vector Machine, ADASYN: Adaptive Synthetic Sam-
pling Approach)

I.(b)

II. (b)

III. (b)

IV. (b)
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the data. Conversely, CNN is constructed by 
layering multiple convolutional and pooling 
layers, which can efficiently extract spatial  
information from images without the need for 
temporal information [33]. However, LSTM 
uses matrix multiplication on its own, when 
it’s combined with two dimensions CNN, the 
input is a matrix, not a series. Accordingly, the 
proposed CLSTM replaces the matrix multi-
plication with the convolution operation in the 
LSTM gates to simultaneously extract spatial 
and temporal features. It captures the benefits 
of both CNN and LSTM and not only can  

extract temporal features by LSTM but can 
also characterize spatial features by CNN. 
Figure 4 depicts the CLSTM unit in detail.

The enhanced CLSTM unit has three inputs 
for every gate: the memory information from 
the former unit, the output from the former 
unit, and the current time input. The upgraded 
CLSTM, which is made up of an input gate, a 
forget gate, an output gate, and a memory unit, 
can successfully learn time series information.

1) Gate of Forgetting: the gate of forget-
ting is responsible for selectively discarding  
unnecessary information from the memory 
unit, as follows:

[ ]( )1 1  t f t t t ff W c h x bσ − −= +                (1)

where σ is the function of activation,    rep-
resents the operation of convolution, and xt  
represents the input data at a specific point in 
time. ct-1 is the memory unit’s prior informa-
tion, and ht-1 is the previous CLSTM unit out-
put. Wf and bf are the forget gate’s weight and 
bias, respectively [34].

Data samples Number
train 19200

validation 4800
test 1500

Table 1: Splits of the dataset for train, testing, 
and validation of the proposed model

Figure 3: (a) One-dimension presentation of a segment of data. (b) Three-dimension presenta-
tion of a segment.

a

b
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Proposed CLSTM-AE Network 
Figure 5a exhibits the proposed CLSTM-

AE network structure. The encoder section 
includes CLSTM, BatchNormalization, and 
pooling layers for encoding input data. De-
CLSTM (Deconvolutional LSTM), deconvo-
lutional, BatchNormalization, and upsampling 
layers are used in the decoder to decode the 
encoded features. CLSTM-AE includes addi-
tional information on past units. This enhanc-
es the ability to learn from previous memory. 
The structure of the network enables efficient 
feature learning for intricate signal-processing 
applications. 

1) Utilizing Equations, the CLSTM unit  
utilizes a memory unit and three gates which 
are employed to extract input data features 
(1)-(6). CLSTM generates:

[ ]( )( )1 1  E t t th F W c h x bσ − −= +               (7)

Here, F demonstrates the computation of 
the CLSTM memory cell and three gates. 
The CLSTM-AE encoder takes into account 
the CNN network structure, allowing it to 
compress and extract information from the 
CLSTM output using convolution and pooling 
layers. The decoder utilizes a deconvolution 
layer and an up-sampling layer to improve the 
quality of data reconstruction [34].

2) Convolution Layer: the result of the  
convolution layer is:

( ) i i iC f X w b= ∑ +                             (8)

The CLSTM output is represented as X, 
Wi denotes an activation function, and the  
rectified linear unit (ReLU), is utilized along-
side the ith convolution kernel [34].

3) The pooling layer reduces data dimen-
sionality to improve computational efficiency. 
The output of the pooling layer is used for the 
L-length feature in the convolution layers in 
an ith channel,

( ) ( ){  ( , 1 }

0  

i iP m m C mW m W

Lm
S

= +

≤ ≤
               (9)

where W denotes the window of pooling 
width, and S shows the size of the stride [34].

Figure 4: The Convolution Long-Short Term 
Memory (CLSTM) unit structure

2) The gate of input determines whether or 
not to incorporate fresh information into the 
memory unit, consisting of a pair of steps:  
determining the information, updating via 
the sigmoid layer, and generating substitute  
information via the hyperbolic tangent  
function.

[ ]( )1 1  t i t t t ii W c h x bσ − −= +                 (2)

[ ]( )1 1tanh   t c t t t cC W c h x b− −= +

               (3)

Here it and ˜

tC  refer to the output of the input 
gate and the memory unit’s substitute informa-
tion, and hyperbolic tangent [34]. 

3) Memory Cell: It keeps the information up 
to date.

1t t t t tC f C i C−= ⋅ + ⋅                                      (4)
Which Ct is the memory unit’s stored infor-

mation [34].
4) Ultimately, based on the prior compu-

tation, the gate of output computes the last  
output.

[ ]( )1 1  t o t t t oo W c h x bσ − −= +                      (5)

( )tanht t th o C= ⋅                                           (6)
In this context ot and ht denote the current 

time outputs of the gate of output and CLSTM 
unit, respectively [34].
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4) Layer of up-sampling: This is the inverse 
of the pooling layer. For the ith feature, the  
result of up-sampling is:

[ ]0
  2  1 2ki

k i
k

k j
U k t t t l

X k j
≠

= ∈ = … =
 (10)

In this case, the variable l denotes the length 
of input features. jk denotes the location of 
the maximum value obtained during the  
max-pooling process, and Uk

i is the kth element 
of Ui [34].

5) Deconvolution layer: This is the inverse 
operation of the convolution layer.

( )ReLu  i i iD X w c= ∑ ⊗ +                    (11)

Here ⊗  refers to the deconvolution compu-
tation, and iw  which refers to the kernel used 
for deconvolution [34]. 

6) DeCLSTM: DeCLSTM has a structure, 
which is similar to CLSTM, but deconvolu-
tion is utilized in place of convolution. The 
DeCLSTM output is:

( )( )' ' '
1 1  D t t th F W c h x bσ − − = +′ ′ ′

      (12)

where F ′  is the DeCLSTM computation 
which refers to the components of the memory 
cell and three gates. '

1th −  is the former output 
of the DeCLSTM unit [34].

(a)

(c)

(b)

Figure 5: (a) Architecture of proposed CLSTM-AE, (b) Artificial neural network as a classifier, (c) 
CNN-LSTM classifier
(CLSTM-AE: Convolution Long-Short Term Memory AutoEncoder, CNN: Convolutional Neural 
Network, LSTM Long Short-term Memory)
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CLSTM-AE Training
Table 2 provides an overview of the 

CLSTM-AE training process, which aims to 
minimize the loss function by reconstructing 
data. In this process, the autoencoder utilizes 
the reconstructed error as its loss function. The 
Mean Square Error (MSE) (Equation (13)) is 
employed as the loss function in CLSTM-AE 
training [34], as follows:

1

1 m

n n
n

E y x
m =

= −∑                                              (13)

where m is the number of data points, yn is 
the predicted data point, and xn is the original 
data.

In this research, the CLSTM-AE model 
is optimized using AdaGrad. Because of 
its capability of adaptive learning rate. The 
CLSTM-AE is divided into two parts: encoder 
and decoder. The data are abstracted into their 
main components at the end of the encoder 

section (named bottleneck of autoencoder), 
using max-pooling and convolution layers. A 
combination of convolution and LSTM layers 
is used to extract both the spatial and tempo-
ral features. The batch normalization layer is 
used during training to avoid overfitting. The 
autoencoder architecture was designed with 
the fewest layers to reduce the computation-
al burden. The data are then reconstructed as 
input at the end of the decoder part, which is 
repeated until the minimum error between the 
data and its reconstructed version is obtained 
during 50 epochs. The network has learned to 
reconstruct the data with minimum error, and 
the encoder has learned how to extract the 
main components of data at its final layer. Fol-
lowing training, the main components of data 
are extracted from the autoencoder’s bottle-
neck. The autoencoder is then saved, and the 
encoder section is separated from the autoen-
coder. To classify data into P300 and nP300, 
test data are fed to the encoder to extract its 
main components. The extracted features of 
the final layer of the encoder are flattened and 
fed into an artificial neural network during  
250 epochs for classification, showing drop-
out to prevent overfitting during the training  
process and sigmoid as an activation function 
at its last layer (Figure 5b).

Results
After extracting features of the test data by a 

trained encoder, they are fed into an artificial 
neural network in 250 epochs for 15 signal 
trials of each subject. The accuracy and loss 
of the model for subject A and subject B are 
depicted in Figure 6. The model is also evalu-
ated according to other metrics, presented in 
Table 3. Furthermore, we also prepared the  
results of the other state-of-the-art works on 
the same dataset in Table 4, showing the pro-
posed method has superiority over most of the 
last outstanding papers.

Further, a CNN-LSTM was implemented 
by the same dataset to identify the superi-
ority of CLSTM-AE to CNN-LSTM. The  

P300 Classification by an Advanced Deep Learning Method

Input: Training data x
1-Establish the hyperparameters
2- Randomly initialize weights and biases.
3- At iteration number N.
4- Enter the training data, X.
5- Minimize the loss function during the training of the 
CLSTM-AE model.
6- Compute the feature output during the encoding 
phase, h.
7- Compute the reconstructed output during the  
decoding phase, y.
8- Compute the reconstructed error, E.
9- Update the decoder's parameters, Wd and Bd.
10-update the encoder's parameters Wd Bd

11-End of For
Output: Feature h and reconstructed data y.

CLSTM-AE: Convolution Long-Short Term Memory  
AutoEncoder

Table 2: The Convolution Long-Short Term 
Memory AutoEncoder (CLSTM-AE) Training 
Process [34]
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Figure 6: Accuracy (a and c) and loss (b and d) of the proposed method during training and vali-
dation for subject A, and subject B, respectively.

Subject A Subject B

(a) (c)

(b) (d)

Ramin Afrah, et al

Accuracy (%) Precision (%) Sensitivity (%) F1-Score (%)

CNN-LSTM CLSTM-AE CNN-LSTM CLSTM-AE CNN-LSTM CLSTM-AE CNN-LSTM CLSTM-AE

Subject A 91 95 88 91 98 99 95 95

Subject B 90 94 85 90 98 99 91 94
CNN: Convolutional Neural Network, LSTM Long Short-term Memory, CLSTM-AE: Convolution Long-Short Term Memory 
AutoEncoder

Table 3: Results of CNN-LSTM and CLSTM-AE (the proposed method)
(CNN: Convolutional Neural Network, LSTM Long Short-term Memory, CLSTM-AE: Convolution 
Long-Short Term Memory AutoEncoder)
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Reference 
number

Dataset 
(Subject)

Accuracy (%)

[24] 
A 76.00
B 80.00

[35]
A 94.20
B 94.20

[36]
A 81.00
B 84.00

[37]
A 86.39
B 86.39

[15]
A 88.40
B 90.00

Table 4: Results of the state-of-the-art works 
on the same dataset

architecture of the CNN-LSTM is shown in 
Figure 5c, and results are presented in Table 3 
Regarding accuracy, precision, sensitivity, and 
F1-Score, CLSTM_AE shows better perfor-
mance as compared to CNN-LSTM. Addition-
ally, CLSTM-AE extracts an abstraction of the 
data reducing the computational burden.

Discussion
The current investigation aimed at employ-

ing a 3D input CLSTM_AE model for the 
P300 detection. The proposed model was im-
plemented based on deep learning principles 
to redefine the problem of P300 classifica-
tion from a signal classification into a video 
classification problem to use both spatial and 
temporal features of EEG signal in two stages. 
In the first stage, the autoencoder as an unsu-
pervised feature extractor is used to not only 
extract but also abstract the principle features 
in its latent space. In the second stage, it’s 
checked whether a signal contains P300 or not 
using a neural network as a classifier. One of 
the main challenges of P300 classification in 
the P300 speller matrix is the imbalanced na-
ture of data [38]; accordingly, the ADASYN 
approach was used for augmenting the 
P300 class. ADASYN has three advantages,  

including maintaining the primary distribution 
of features in the feature space after augmenta-
tion, maintaining the morphological structure 
of P300, and the non-randomness characteris-
tic of this method as compared to other syn-
thetic augmentation methods, which causes 
the stability of augmentation in each run [31]. 
Accuracy as a metric to survey the number 
of true positive and true negative classified 
samples, precision as a metric to assess the  
ratio of true positive samples on true and false 
positive samples, sensitivity to examine the 
performance of the classifier on true positive 
samples and false negative samples, and F1-
score to evaluate the trade-off between sensi-
tivity and precision are used for performance 
evaluation. Based on the results in Table 4, the 
proposed method has superiority over most of 
the last outstanding papers [15, 24, 36-38].

Conclusion
In this work, a CNN-LSTM model is de-

signed for P300 classification to redefine the 
signal classification problem to video classi-
fication and explore the feasibility of exploit-
ing all the features of the data. Despite the 
high-quality classification, this method in its 
original form was computationally intensive. 
By considering CNN-LSTM’s ability to ex-
tract both spatial and temporal features in the 
form of video classification, we sought to pre-
serve this advantage of CNN-LSTM and find 
a solution to the aforementioned drawbacks. 
To this end, due to the unsupervised nature 
of autoencoders, we not only retain the ben-
efits of CNN-LSTM but also abstract the data 
based on features extracted efficiently from 
CNN-LSTM, reducing the computational 
burden and SNR improvement and finally 
provide more accurate classification results. 
Also, to solve the problem of unbalanced 
data, conventional methods repeat the number 
of segments in classes with a small number 
of segments. These techniques copy the data 
that may cause overfitting which are replaced 
by ADASYN as a new method for P300  
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augmentation. Compared to other studies, this 
work involves changing the view of the prob-
lem from signal classification to video classi-
fication, using all features of the data in the 
time domain and extracting spatial and tempo-
ral features simultaneously, and using minimal 
preprocessing algorithms before feature ex-
traction. Furthermore, in the field of ERP, we 
use a new data augmentation method that pre-
serves the structure and feature space of data 
as before. Future work could explore more  
efficient channels, parameter tuning, and other 
network architectures.
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