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ABSTRACT

Background: The rapid increase in the number of Mobile Phone Base Stations
(MPBS) has raised global concerns about the potential adverse health effects of ex-
posure to Radiofrequency Electromagnetic Fields (RF-EMF). The application of ma-
chine learning techniques can enable healthcare professionals and policymakers to
proactively address concerns surrounding RF-EMF exposure near MPBS.

Objective: The current study aimed to investigate the potential of machine learn-
ing models for the prediction of health symptoms associated with RF-EMF exposure
in individuals residing near MPBS.

Material and Methods: This analytical study utilized Support Vector Machine
(SVM) and Random Forest (RF) algorithms, incorporating 11 predictors related to par-
ticipants’ living conditions. A total of 699 adults participated in the study, and model
performance was assessed using sensitivity, specificity, accuracy, and the Area Under
Curve (AUC).

Results: The SVM-based model demonstrated strong performance, with accura-
cies of 85.3%, 82%, 84%, 82.4%, and 65.1% for headache, sleep disturbance, diz-
ziness, vertigo, and fatigue, respectively. The corresponding AUC values were 0.99,
0.98, 0.920, 0.89, and 0.81. Compared to the RF model and a previously developed
model, the SVM-based model exhibited higher sensitivity, particularly for fatigue,
with sensitivities of 70.0%, 83.4%, 85.3%, 73.0%, and 69.0% for these five health
symptoms. Particularly for predicting fatigue, sensitivity and AUC were significantly
improved (70% vs. 8% and 11.1% for SVM, Multilayer Perceptron Neural Network
(MLPNN), and RF, respectively, and 0.81 vs. 0.62 and 0.64, for SVM, MLPNN, and
RF, respectively).

Conclusion: Machine learning methods, specifically SVM, hold promise in
effectively managing health symptoms in individuals residing near or planning to settle
in the vicinity of MPBS.
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Introduction
he rapid progress in wireless communication technologies has
led to a significant increase in the general population’s exposure
to Electromagnetic Fields (EMFs). Individuals are now con-
stantly exposed to various sources of EMFs, such as mobile phones,
cordless phones, Wi-Fi routers, and power lines. Consequently, global
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concerns are rising regarding the potential
adverse health effects of Electromagnetic
Field (EMF) exposure. Researchers are active-
ly investigating the impact of low-intensity
EMFs on human health and other organisms.

Several studies have investigated the poten-
tial health effects of exposure to microwave
radiation, EMFs, Radiofrequency (RF), and
radiofrequency electromagnetic radiation
[1-15]. Individuals living within <300 me-
ters of mobile base stations reported more
frequent symptoms of nausea, headache, diz-
ziness, irritability, discomfort, nervousness,
depression, sleep disturbance, memory loss,
and diminished libido compared to those liv-
ing further away (>300 meters) [16]. In a re-
view published in 2010, 8 out of 10 studies
through PubMed reported an increased preva-
lence of adverse neurobehavioral symptoms
in populations living within <500 meters of
base stations, as well as other effects, such as
headache, fatigue, sleep disturbance, and poor
concentration [5].

The potential adverse health effects of human
exposure to radiofrequency electromagnetic
fields, including long-term effects are well-
documented. Jooyan and Mortazavi addressed
the challenging issue of the carcinogenesis of
radiofrequency radiation in their commentary
published in JAMA Oncology and also high-
lighted the shortcomings of studies that do not
support a potential link between exposure to
radiofrequency radiation and increased cancer
risk [17].

The exposure from broadcasting sites and
base stations affects the entire body from a
distance, while smartphones and smart gad-
gets only impact the head and hands in close
proximity [18]. Recent studies show that mo-
bile phone base stations are the primary source
of the radiofrequency radiation spectrum [19].
In 2022, a review conducted on the effects
of base station antennas on human health re-
vealed three types of impacts: radiofrequency
sickness, cancer, and changes in biochemical
parameters. Among the globally reviewed 38

studies, 28 indicated some forms of effect,
with radiofrequency sickness being the most
prevalent, accounting for 73.9% of the cases
[20]. A case study conducted in Stockholm
showed the effects of Electromagnetic Hyper-
sensitivity (EHS) near mobile phone base sta-
tions [21]. Epidemiology studies are the pri-
mary focus of RF research concerning human
exposure, even though it is challenging to sep-
arate distance from a tower as an independent
variable and determine actual exposure levels
due to the prevalence of ELF and RF fields in
daily life through personal wireless devices.
This poses a potential weakness in such stud-
ies as it becomes difficult to find unexposed
controls [22].

Given the exponential growth of wireless
technology, developing a model to predict po-
tential adverse health effects in advance could
help minimize health hazards and symptoms
for those living or planning to settle in close
proximity to mobile phone base stations. Such
models could also be used as a precautionary
measure when setting mobile base stations to
minimize potential health hazards.

Although the negative impacts on health
caused by living close to MPBS have been ex-
tensively studied, there is a lack of reports on
the use of artificial intelligence models to fore-
cast subjective health symptoms in individu-
als residing or working near these stations. In
the previous research, we introduced models
based on Multilayer Perceptron Neural Net-
works (MLPNN) to anticipate subjective
health symptoms in individuals living near
cellular phone base stations [23]. The system
provided promising results, but its sensitiv-
ity in predicting symptoms, such as fatigue
was low. Therefore, a more accurate model is
needed for early detection of health symptoms
among individuals living near mobile stations.

In this work, we explored the possibility of
developing a reliable and applicable model
using the Support Vector Machines (SVM)
algorithm, which has been shown to be a ro-
bust method for classification and pattern
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recognition [24], particularly effective in ana-
lyzing medical data [24-26]. The rest of this
paper includes a brief discussion of the clas-
sifiers used, a description of the methodology,
and the results and discussion sections.

To our knowledge, this initial research rep-
resents a pioneering effort in utilizing Support
Vector Machines (SVM) to predict personal
health symptoms among individuals living
in proximity to mobile phone base stations,
despite certain limitations such as relying on
personal symptom accounts. The significant
advantage of the SVM-based model devel-
oped in the present study lies in its outstanding
performance in terms of accuracy and the Area
Under the Curve (AUC).

Material and Methods

The objective of this “analytical study” was
to develop a model for predicting the subjec-
tive health symptoms of individuals living
near mobile base stations, with a focus on the
five common complaints of headache, sleep
disturbance, dizziness, vertigo, and fatigue.
The desired model should determine whether
an individual might have one or more of these
symptoms. The development process included
three main steps: data collection, data prepro-
cessing, and model development.

Data collection

A total of 699 adults, consisting of 363 men
(average age 32+13 years) and 336 women
(average age 32+12 years), who lived near
cellular phone base stations in 11 different
districts of Shiraz, Iran, were included in this
cross-sectional study. The participants were
randomly selected, with 20% of the base sta-
tions in each random district. Buildings locat-
ed within 1 km of the selected base stations
were divided into four groups based on their
distance from the nearest base station (D): 1)
for distances less than 100 m, 2) for distances
between 100 m and 300 m, 3) for distances be-
tween 300 m and 600 m, and 4) for distances
between 600 m and 1000 m. These ranges were

selected because individuals living within 300
m of a base station may experience symptomes,
such as tiredness, headache, sleep disturbance,
discomfort, irritability, depression, memory
loss, dizziness, and decreased libido [16].

A questionnaire was administered, contain-
ing questions on demographic data, subjective
complaints, and occupational and environmen-
tal exposure to different sources of electromag-
netic fields. The average electric and magnetic
field strengths were measured in each house-
hold using a recently calibrated EMF meter.
Personal information, along with comprehen-
sive details of the participants’ lifestyles, was
collected by trained interviewers. For each
participant, age, gender, education level, mo-
bile phone usage during the day/week/month,
and the distance of the living/working place
to the base station tower were recorded. In the
end, a total of 11 parameters were documented
to assess the living conditions of each partici-
pant. Subjective complaints, such as nausea,
headache, dizziness, irritability, discomfort,
nervousness, depression, sleep disturbance,
memory loss, and diminished libido were
noted. Prior to their involvement in the study,
all participants provided written consent. The
data collection process involved conducting
measurements at participants’ homes and con-
ducting interviews in person.

Statistical
preprocessing
The objective of this step was to identify
and eliminate outliers or unusual observa-
tions, as well as select the variables to be uti-
lized in the model. To achieve this, graphical
display methods such as scatterplots and box
plots were employed, alongside quantitative
techniques like the Interquartile Range (IQR).
Inconsistent data, such as daily cellphone us-
age exceeding 24 hours, were considered
unacceptable parameters. Each feature vari-
able was normalized using the min-max scal-
ing method (Equation 1), which scales the
variables to a range of 0 to 1, as follows:

analysis and data
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, x—min(x)

X

1
max (x)—min(x) 1

where x and x are the original and normal-
ized values of a given variable, respectively.

Model Development

The model development process consisted
of two main steps: feature selection and clas-
sification. The feature selection step aimed to
identify relevant predictors and eliminate ir-
relevant ones. We utilized a neighborhood
component analysis method, a non-parametric
technique that estimates the relative weight
of each variable by maximizing the expected
classification accuracy [27]. Ultimately, af-
ter the selection process, 11 parameters were
identified related to the individuals’ living sta-
tus that proved effective for the model. The list
of these parameters and a description of each
one is provided in Table 1.

The model aimed to forecast subjective
health symptoms in individuals residing close
to mobile base stations by utilizing the 11 liv-
ing status parameters described in Table 1.
Specifically, the model aimed to determine
whether a participant experienced one or more
health symptoms, such as headache, sleep

disturbance, dizziness, vertigo, and fatigue.
This task belongs to the classification category
in machine learning, where the class of a new
sample is determined by leveraging known
class labels within a given dataset. In the
present study, SVM and RF algorithms were
implemented to develop the desired predic-
tion models. The models were developed us-
ing Matlab’s Statistics and Machine Learning
Toolbox (Mathworks, Natick MA, USA).

The SVM is a statistical supervised learn-
ing model that tackles common challenges in
machine learning, such as overfitting and local
minimum, by minimizing structural risk the-
ory [28]. By minimizing an upper bound on
the generalization error, the SVM effectively
addresses the objective of reducing errors in
statistical pattern recognition and automated
estimation systems. We trained the SVM using
the Sequential Minimal Optimization (SMO)
method [29].

The RF algorithm generates multiple deci-
sion trees, with each tree incorporating random
features. The trees are constructed by select-
ing the most informative features to separate
classes, and the process recursively continues
based on the dataset. Training in the random
forest occurs through bagging and replace-

Table 1: The list of variables included in subjective health symptoms prediction model

Variable Description
Age Age (year), at the time of interview
Gender Gender (male/female/not declared)

Mobile phone call time

History of mobile phone usage
Cordless phone use

VDU use

Distance from base station
Duration of residence
Exposure time

Exposure to power lines
Other wireless devices

Average daily call time (min)

Number of months of mobile phone usage

Average daily call time using cordless phones (min)
Average daily use of Video Display Units (VDUs) (min)
Distance from the nearest mobile base station (m)
Duration of residence in the present house (month)
Average daily exposure time to mobile base stations (h)
Living in the vicinity of a power line (yes/no)

Exposure to other sources of electromagnetic fields (yes/no)
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ment, in which random subsets are selected
from the dataset, and a tree is fitted to each
subset. To classify a test sample, it is classified
by each tree, and the outputs of the trees are
combined for the final decision. The RF model
employed 100 decision trees to create a for-
est, and the Gini impurity metric was used to
measure attribute importance. Aggregating the
outputs of the classifiers through majority vot-
ing is a common practice in the RF algorithm.

Model Evaluation

The performance of the developed model
was quantitatively assessed using sensitiv-
ity, specificity, and accuracy indices. These
indices provide measures to evaluate the ac-
curacy and effectiveness of the classification
process, determining the model’s ability to
correctly identify individuals with or without
symptoms, as follows:

Sensitivity = ——x100 2
4 TP+ FN @
N
Specificity = ——x100 3
pecificity = o rp ®)
Accuracy = [P+ TN x100  (4)
TP+TN + FP+ FN

where TP and TN are the count of subjects
accurately identified as having a symptom and
not having a symptom, respectively. Also, FP
and FN are the count of individuals without
a symptom who are mistakenly identified as
having a symptom and with a symptom who
are mistakenly identified as not having a
symptom, respectively.

To estimate these indices, the subjective
complaints recorded during data collection
were considered as the “gold standard” for
training and testing the model. To ensure un-
biased estimation and ultimately an unbiased
evaluation of the model, the data were ran-
domly divided into three parts: a training set
comprising 75% of the data, a validation set
with 5% of the data, and a test set containing
20% of the data.

The training set was used to find the support

vectors and determine the parameters of the
decision function [28]. The validation dataset
was employed to select the optimal parameters
for the model and optimize its performance by
identifying the best values for regularization
parameters, the kernel function, and its associ-
ated parameters.

The RF model was trained using the bagging
method, which involves randomly sampling
subsets of the training data, fitting a decision
tree to each subset, and aggregating the pre-
dictions. This RF model utilizes the Gini im-
purity metric to measure the quality of nodes
and branches to achieve the best results.

Finally, the test dataset was employed to
evaluate the final model fitted to the training
dataset. This evaluation involved comparing
the predicted values for these examples with
the actual values, providing a measure of the
model’s performance.

Results

After developing the models, their perfor-
mance was evaluated using test data comprised
of 140 samples. Four performance indices,
namely sensitivity, specificity, accuracy, and
AUC were utilized to assess the effectiveness
of the models. The SVM-based model dem-
onstrated excellent performance in predicting
health symptoms, such as headache, sleep dis-
turbance, dizziness, vertigo, and fatigue. For
example, it achieved accuracies of 85.3%,
82%, 84%, 82.4%, and 65.1% respectively.
The corresponding AUCs were 0.99, 0.98,
0.92, 0.89, and 0.81 respectively. Compared
to the RF model and the previously devel-
oped model, the SVM-based model showed
higher sensitivity (83.4%, 85.3%, 73%, 69%.,
and 70% for headache, sleep disturbance,
dizziness, vertigo, and fatigue respectively).
Significantly, the model demonstrated notable
improvements in sensitivity and AUC for pre-
dicting fatigue. The sensitivity increased to
70% and the AUC improved to 0.81. In com-
parison, the MLPNN model achieved a sensi-
tivity of only 8% and an AUC of 0.62, while
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the RF model achieved a sensitivity of 11.1%
and an AUC of 0.64 [23].

Figure 1 presents the relative attribute im-
portance for the variables included in the
model. These numbers were estimated based
on the average impurity for each class in the
ratablendom forest algorithm. Figure 1 high-
lights three variables as the most important
predictors of health symptoms: the distance
from the mobile base station, the age of the
participant, and the duration of residence in
the area. Table 2 indicates that the SVM-based
system demonstrates superior performance
compared to other systems in predicting sub-
jective health symptoms in the majority of
cases, as evidenced by elevated sensitivity and
AUC values.

Discussion
The aim of this study was to explore the
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Exposure time
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Cordless phone use

VDU use

Distance from base station

Education

History of mobile phone usage

Mobile phone call time

Gender

Age
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_

potential of Al in predicting the health risks
associated with exposure to EMF. The results
obtained in this study demonstrate that the
SVM-based system outperforms other sys-
tems in predicting subjective health symptoms
for most cases, as indicated by higher sensi-
tivity and AUC values. This finding is consis-
tent with previous studies highlighting the ef-
fectiveness of SVM in classification problems
[26, 30]. However, the accuracy in predicting
fatigue symptoms using the SVM-based model
is slightly lower than that of other symptoms.
The observed discrepancy in the performance
can be attributed to the multifactorial nature of
fatigue. Thus, other variables, which are not
considered in the models, may contribute to
the prediction of fatigue, leading to the differ-
ences in performance.

A comparison between the SVM-based
model and the previously developed MLPNN-
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Figure 1: Relative Importance of Attributes for Subjective Health Symptoms Prediction Mod-
els Estimated Using RF Model. (a) headache; (b) dizziness; (c) sleep disturbance; (d) fatigue
(e) vertigo. (RF: Radiofrequency, VDU: Video Display Unit)
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Table 2: Performance Comparison of Prediction Models for Subjective Health Symptoms in Indi-
viduals Residing Near Mobile Phone Base Stations: SVM, MLPNN, and RF Models. (SVM: Support
Vector Machine, MLPNN: Multilayer Perceptron Neural Network, RF: Radiofrequency)

Symptom Sensitivity (%) Specificity (%) Accuracy (%) AUC
MLPNN SVM RF MLPNN SVM RF MLPNN SVM RF MLPNN SVM RF
Headache 718 834 751 909 855 934 838 853 867 095 099 098
Sleep disturbance 821 853 711 833 821 919 829 820 8.9 09 098 095
Dizziness 652 730 673 854 846 949 810 84.0 890 088 092 0.95
Vertigo 650 69.0 522 847 835 913 810 824 813 087 089 0.84
Fatigue 80 700 111 989 686 979 886 651 845 062 081 0.64

AUC: Area Under the Curve, MLPNN: Multilayer Perceptron Neural Network, SVM: Support Vector Machine, RF: Radiofrequency

based model revealed that SVM’s superior
performance can be attributed to its focus on
minimizing generalization errors during train-
ing [23]. In contrast, MLPNNSs tend to overfit
the training data, resulting in lower perfor-
mance on unseen data. These results align
with previous research highlighting SVM’s
capability in classification problems [26, 30].

There is one exception observed in Table 2,
in which the accuracy of the SVM in predict-
ing fatigue symptoms is lower than both the
MLPNN-based model and RF-based model.
However, the sensitivity of the SVM-based
model for fatigue symptoms is significantly
higher than that of the other models [23]. The
trade-off between sensitivity and accuracy
shows that enhancing one metric may result in
a compromise with the other. In this study, we
tackled this trade-off by incorporating class
weights during the classifier training process.
Specifically, we assigned higher costs to false
negative errors compared to false positive er-
rors (FN=2FP). As a result, the SVM model
achieved a higher AUC value for predict-
ing fatigue symptoms compared to the other
models.

The relative attribute importance results for
the variables (Figure 1) indicate that “age”
and “gender” have the most significant influ-
ence on health symptoms. Additionally, both
“mobile usage factors (history and call time)”

are among the top four influential parameters.
However, the effect of other attributes on cog-
nitive symptoms is also comparable to that of
the most important one. These findings are
consistent with previously published works
that reported “mobile phone usage” and “age”
as among the top four influential features for
each cognitive symptom [23].

From a broader standpoint, our findings are
in line with studies that have reported that
while there is an increasing concern regarding
the potential negative health consequences of
RF-EMF exposures from mobile phone base
stations, the health complaints of individuals
living near these base stations cannot be fully
explained by these concerns alone [31]. No-
tably, previous large population-based studies
have shown that residents who were concerned
about or attributed detrimental biological ef-
fects of RF-EMF generated by mobile phone
base stations, as well as those living closer
to the base station (e.g., <500 m), had more
health complaints compared to others [31].
Furthermore, our results support reports show-
ing the presence of sleep disturbances, head-
aches, dizziness, irritability, concentration
difficulties, and hypertension in the majority
of people residing near mobile phone base
stations [32]. Additionally, the obtained re-
sults align with reports indicating a higher risk
of developing neuropsychiatric problems in
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individuals living in the vicinity of mobile
phone base stations. Headache, memory
changes, dizziness, tremors, depressive symp-
toms, and sleep disturbance have been report-
ed to be significantly higher in individuals liv-
ing around mobile phone base stations [33].

Regarding the co-existence of proximity to
power lines and mobile phone base stations,
our results are in line with those of studies that
associate perceived proximity to both with
Non-specific Physical Symptoms. However,
our findings contradict a limited number of
studies that reported no significant association
between measured RF-EMFs emitted from
mobile phone base stations and adverse health
effects [34].

The practical application of our study lies in
utilizing Al to predict health risks associated
with EMF exposure. By employing relatively
simple and easily measurable variables as in-
puts, our model can predict the health status of
individuals residing near cellular phone base
stations. This predictive capability can help
assess potential health risks for those currently
living near these stations or individuals con-
sidering moving to such areas. Consequently,
the model can contribute to the reduction of
EMF-related health risks and inform decision-
making processes related to the management
and establishment of mobile base stations.

While this study presents promising results,
it is essential to acknowledge its limitations.
All variables, including both input and out-
put variables, rely on self-reports, which in-
troduce a degree of uncertainty in the values.
Achieving accurate estimates for these param-
eters would require individual monitoring us-
ing specialized instruments, which may pose
logistical challenges. However, the focus of
this study was to develop a practical model
using easily accessible variables. Furthermore,
the findings should be considered preliminary,
and further evaluation of the model’s predict-
ability and reliability is necessary using a
more extensive dataset with long-term follow-
up, such as a five-year study. Future research

should also explore the inclusion of additional
variables, such as weight, hours of sleep per
night, general health, and socio-economic fac-
tors. Deep statistical analysis, such as multi-
dimensional analysis, can provide deeper in-
sights, and the model’s performance should be
assessed over an extended follow-up period.

Conclusion

The current study highlights that addressing
the impact of microwave radiation on the hu-
man nervous system, and cognitive functions
necessitates the consideration of multiple fac-
tors, such as environmental exposure to mo-
bile phone base stations and individual health
conditions. By harnessing the power of Al,
healthcare providers can better understand and
predict the health risks associated with EMF
exposure, leading to delivering targeted inter-
ventions and supporting affected individuals.
In this study, an SVM classifier was success-
fully implemented to predict five subjective
health symptoms, surpassing the performance
of a previously developed MLPNN-based
model. The findings of this research under-
score the potential of Al-based models in as-
sisting healthcare professionals, including
physicians, in effectively managing symptoms
associated with EMF exposure in individuals
living near mobile phone base stations. Future
work should include additional variables, sta-
tistical analyses, and longer follow-up periods.
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