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ABSTRACT

Background: Manual delineation of volumes for prostate radiotherapy treatment is
a time-consuming task for radiation oncologists and is also prone to variability. Deep
learning-based auto-segmentation methods showed promising results with accurate
and high-fidelity contours.

Objective: The objective of this study was to evaluate the feasibility of a Com-
puted Tomography (CT)-based deep learning auto-segmentation algorithm for multi-
organ delineation in prostate radiotherapy.

Material and Methods: In this single-institution retrospective study, a total of
118 patients with prostate cancer were included. We applied 3D nnU-net deep convolu-
tional neural network architecture, a self-adapting ensemble method for simultaneous
fast and reproducible multi-organ auto-contouring. The dataset was randomly divided
into training and test sets from 95 and 23 patients, respectively. Intensity-modulated
radiotherapy plans were generated for both manual and automatic delineations using
identical optimization settings. Contours were assessed in terms of the Dice Similarity
Coefficient (DSC), and average Hausdorff Distance (HD). Dose distributions were ad-
ditionally evaluated using parameters derived from Dose-Volume Histograms (DVH).

Results: On the test set, 3D nnU-net achieved the best performance in the blad-
der (DSC:0.97, HD:4.13), right femur head (DSC:0.96, HD:3.58), left femur head
(DSC:0.96, HD:3.95), rectum (DSC:0.9, HD:10.04), prostate (DSC:0.82, HD:3.68),
lymph nodes (DSC:0.77, HD:15.5), and seminal vesicles (DSC:0.69, HD:10.95). DVH
parameters of targets and Organ at Risks (OARs) were significantly different except
for lymph nodes and femoral heads between treatment plans based on manual and
automatic contours.

Conclusion: The 3D nnU-net architecture can be successfully used for multi-
organ segmentation in the male pelvic area.
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Introduction
rostate cancer is the second most commonly identified form of
cancer among men worldwide [1, 2]. Radiation Therapy (RT) is
considered an integral component of the modern multidisciplinary
approach to the management of prostate cancer [3]. Radiation therapy
treatment aims to deliver a highly conformal radiation dose to the tu-
mor, while at the same time sparing normal surrounding tissues (i.e.,
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Organs at Risk (OARSs)), therefore minimizing
acute and late radiation-induced toxicities [4].
During the RT treatment planning process, a
prominent and critical step is an accurate and
precise delineation of the target and OARs on
the patient’s Computed Tomography (CT) im-
ages [5]. In current clinical practice, manual
segmentation performed by radiation oncolo-
gists or experienced planners is considered the
gold standard, which is a tedious and time-
consuming procedure [6, 7]. Furthermore, for
prostate cancer, inter-and intra-rater variation
in delineating target and OARs has been well
documented due to differences in the level of
expertise and preferences of the physicians
over the past decades [8, 9]. Besides, in the
pelvic region, using a simulation CT image for
manual contouring Regions of Interest (ROIs)
is challenging because of the poor soft tissue
contrast of CT images.

Over the past decade, more sophisticated,
advanced, and innovative radiation treatment
technologies, including Volumetric- or Inten-
sity Modulated Radiation Therapy (VMAT,
IMRT), Stereotactic Body Radiotherapy
(SBRT), and proton beam therapy have been
widely adopted in clinical practice [10]. The
use of these RT planning and delivery ap-
proaches leads to a decrease in the volume
of normal tissues receiving moderate to high
radiation doses, resulting in a reduction of ra-
diation-induced side effects. Hence, the sharp
dose gradient created by these techniques re-
quires accurate delineation of target volumes
and OARs to prevent large geometric misses
[11]. It has been reported that even on-board
imaging systems cannot eliminate systematic
delineation errors [12]. As a consequence, it is
needed to have accurate and precise contour-
ing of the target and OARs.

Some research groups have attempted to
develop efficient auto-segmentation tools in
radiation oncology [13-16]. Automated medi-
cal image segmentation techniques, such as
multi-atlas-based and hybrid methods have
been previously considered state-of-the-art

[17]. More recently, with the rapid advances
in Artificial Intelligence (AI), in particular
deep learning algorithms, such as Convolu-
tional Neural Networks (CNNs), a new gen-
eration of auto-segmentation models has been
developed based on deep learning [18]. Deep
CNN-based segmentation algorithms have
gained more attention and resulted in improv-
ing the consistency and efficiency of contour-
ing ROIs [19, 20]. To date, deep CNN models
have been utilized for various tasks in medical
imaging, including image registration, auto-
segmentation, and classification [21-27]. Re-
cently, deep learning-based auto-segmentation
models outperformed older atlas-based meth-
ods due to their ability to learn complex sets of
image features for their accurate performance
of pixel-wise classification of images [28, 29].

The majority of previous studies used geo-
metric accuracy parameters, such as the Dice
Similarity Coefficient (DSC) and Hausdorff
Distance (HD) to evaluate the performance
of auto-segmentation approaches [30]. How-
ever, the accuracy of dose measurement and
the quality of treatment plan quality, achieved
based on the automatically generated con-
tours, are very important in clinical practice
[31]. To date, a limited number of studies have
evaluated the dosimetric effect of CT organ
segmentations for prostate cancer patients
achieved from deep CNNs [13].

Therefore, the purpose of the current study
was to evaluate the feasibility of a CT-based
deep learning auto-segmentation algorithm for
both OARs and target volume in radiotherapy
treatment planning for prostate cancer. Geo-
metric and Dose-Volume Histogram (DVH)
metrics were applied to assess delineation ac-
curacy between the auto-generated contours
and the ground truths of clinicians’ contouring
as the standard of reference.

Material and Methods

Dataset
In this retrospective study, 118 prostate-
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cancer patients participated, who received
IMRT at Shohada-e-Tajrish Educational Hos-
pital, Tehran, Iran between December 2021
and April 2023. Herein, patients with RT
planning for prostate cancer were included,
and those with prostatectomy and femoral
implants were excluded. Raw CT scan im-
ages were used to train and test the proposed
model. All CT images for the treatment plan-
ning were acquired using a 16-slice Siemens
SOMATOM Sensation scanner (Siemens
Medical Systems, Erlangen, Germany) at 110
KeV voltage. All images were obtained with
a 512x512 matrix size and 3-mm slice thick-
ness. In this study, the dataset was randomly
split into 80% for training and 20% for testing
the proposed model.

The target organs were the prostate, semi-
nal vesicles, and lymph nodes and OARs in-
cluded the rectum, bladder, and femoral heads.
All contours were delineated by an experi-
enced radiation oncologist with more than 25
years of experience in prostate radiotherapy
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according to international guidelines and rec-
ommendations. Figure 1 shows the flowchart
of the proposed methodology for multi-organ
segmentation.

Preprocessing and data augmenta-
tion

In this study, several image preprocessing
techniques were performed on collected CT
images prior to network training. Initially, us-
ing the 3D-Slicer software, images, and seg-
mentations for each patient were converted
from the DICOM RT structure format into
binary masks, utilized during the model train-
ing. Row CT scan images were cropped to the
body contour to decrease the computational
cost. Also, the image values were normal-
ized to fit into a range of 0 to 1. Moreover,
aggressive data augmentation techniques were
employed to augment the training dataset, re-
sulting in an increased number of data sam-
ples and the improvement of classification ac-
curacy and the model’s generalization ability.

Geometric performance
evaluation
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Figure 1: Flowchart of the proposed methodology for multi-organ segmentation (CT: Computed
Tomography; CNN: Convolutional Neural Network; IMRT: Intensity-Modulated Radiation Therapy)
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In addition, data augmentation techniques can
reduce overfitting. Herein, data augmentation
techniques were applied with a rotation range
of 10 degrees, a zoom range of 0.1, a width
shift range of 0.5, a height shift range of 0.5,
horizontal/vertical filliping, scaling, bright-
ness, and adding noise.

Deep CNN segmentation model

In the present study, the “no new U-net”
or nnU-net algorithm, a deep learning CNN
method, previously developed for auto-seg-
mentation tasks in biomedical imaging, was
adopted [32]. The architecture template of
nnU-net follows a three-dimensional (3D)
U-Net-like pattern with an encoder-decoder
with skip connections. The nnU-net generates
three various architectures based on the U-net
backbone: a 2D U-net, a 3D U-net operating
at full-image resolution, and a 3D U-net cas-
cade network (3D-Cascade). The 3D-Cascade
network consists of two U-nets: the first 3D
U-net generates coarse segmentation maps
on down-sampled images, and the second 3D
U-net operates on full-resolution images to
refine the segmentation map generated by the
first one. The input channel size was selected
256x256x7 (7 i.e., prostate, seminal vesicle,
lymph nodes, left femur head, right femur
head, rectum, and bladder). To start with, the
number of convolutional kernels was set to 16
in our configuration, which was doubled with
each down-sampling up to a maximum of 320.
The number of kernels in the decoder was set
to mirror the number in the encoder. ReLu was
used as the activation layer except for the final
layer, for which we applied softmax.

Training details

The dataset consisting of CT scans from 118
prostate cancer patients was randomly divided
into a training set from 95 patients and a test
set from 23 patients. The nnU-net was trained
on a training set along with the correspond-
ing manually delineated contours by the radia-
tion oncologist as the reference standard for

learning. In this study, the proposed deep CNN
model was trained using a Dice coefficient
loss function and Adaptive Moment Estima-
tion (Adam) optimizer with an initial learning
rate of 0.001, batch size of 4, and epoch value
of 150. Additionally, batch normalization was
used to train the proposed deep CNN model
faster and more stable. The model was imple-
mented using Python 3.7. The training of the
network was performed in a standard PC with
a GeForce GTX 8 GB NVIDIA and 32 GB
RAM. The training time for 3D nnU-net was
about 11 hours.

Post-processing

In this study, post-processing techniques
were utilized to process the segmentation map
(i.e., the output of the proposed network) gen-
erated by the model to refine and improve the
segmentation result. We used several post-
processing algorithms, such as morphological
operations, connected component analysis,
and smoothing. One common post-processing
technique is called morphological operations,
involving applying mathematical morphology
operations on the segmentation map, such as
erosion, dilation, opening, and closing. Mor-
phological operations were applied as a post-
processing technique to refine the segmenta-
tion output generated by the proposed model.
Specifically, a closing operation was used,
which involves first performing a dilation
operation on the binary image (i.e., the seg-
mentation output), followed by an erosion op-
eration. The purpose of this operation is to fill
in any gaps or holes within the segmented re-
gions. Hence, it smooths out any irregularities
or noise in the segmentation output. The find-
ings show this closing operation after the ini-
tial segmentation step significantly improved
the overall accuracy and robustness of our
segmentation results for male pelvic organs,
particularly for structures, such as the prostate
gland, seminal vesicles, and bladder, which
can have complex shapes and exhibit sig-
nificant anatomical variation across patients.
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In the present study, connected component
analysis was used as a critical step in the post-
processing of male pelvic organ segmentation.
Connected component analysis is a technique
that identifies and labels distinct regions or
components within a binary image based on
pixel connectivity. By applying this method to
the segmentation output, the pelvic organs of
interest were separated from the background
and other non-relevant structures, leading to
isolating and quantifying each organ’s volume
accurately, which is crucial for diagnostic or
treatment planning purposes. Consequently,
incorporating connected component analy-
sis into our segmentation pipeline helped to
improve the accuracy and consistency of our
segmentation results across different patients.
Additionally, a smoothing method was em-
ployed as part of the post-processing of our
segmentation results. The smoothing method
involves applying a low-pass filter or convolu-
tion kernel to the binary image output generat-
ed by our segmentation model. This operation
serves to reduce noise and sharp edges, result-
ing in a more continuous and visually pleasing
representation of the segmented organs. In-
corporating this smoothing step into our pipe-
line helped to reduce false positive and false
negative segmentation errors, particularly
in regions, where the organ boundaries were
less well-defined. Additionally, the smoothed
segmentation output can improve subsequent
analysis steps, such as surface rendering or
volume quantification, which rely on accurate
and smooth representations of the segmented
structures. Then, the predicted NumPy ar-
rays as the output of semantic segmentation
nnU-net model were converted into DICOM
images [33].

Treatment planning

In this study, the impact of automatically
segmented contours on target and OARs do-
simetry was also evaluated, and for all test
cases (n=23 patients), IMRT treatment plans
were generated using the Eclipse v.13.0

(Varian Medical System Inc, Palo Alto, CA,
USA) Treatment Planning Software (TPS).
Herein, a pair of treatment plans was cre-
ated using the identical planning CT image,
one based on the physician segmentation as
the standard ground truth and one based on
the 3D nnU-net segmentation. In both sce-
narios, a 7-millimeter Planning Target Volume
(PTV) margin was used around the prostate
and seminal vesicles. Manually and automati-
cally delineated contours were subjected to
the same optimization settings, which encom-
passed identical objectives and weights for
the target and OARs. All IMRT plans were
generated in the Varian Eclipse TPS, using
the Anisotropic Analytical Algorithm (AAA)
algorithm. All patients were treated with im-
age-guided IMRT using a 6 MV photon beam
(Varian Clinac 600C linear accelerator (Var-
ian Medical Systems, Palo Alto, CA, USA)).
A prescription dose of 54.6-74.5 Gy was con-
sidered. For the target (i.e., prostate, seminal
vesicles, and pelvic lymph nodes), values of
D .., D98%, D2%, and V95% were calculat-
ed. For OARs (i.e., rectum, bladder, and femo-
ral heads), D D_.D_. ., and V50/65/70Gy

mean’ ~ max’

were determined.

Performance evaluation

In the current study, 23 patients as the clini-
cal test dataset were used to evaluate the seg-
mentation performance of the nnU-net model.
The performance of the proposed auto-seg-
mentation model was evaluated with the DSC,
Jaccard index (JI), HD, 95" percentile HD
(95% HD), Average Symmetric Surface Dis-
tance (ASSD), precision, and recall (sensitiv-
ity). The DSC measures the overlap between
predicted contours by deep CNN models and
the ground truth contours, and its value ranges
from 0 (no overlap) to 1 (perfect overlap). The
JI determines the similarity of radiologist-
drawn contours as ground truth and the auto-
segmented contours. The HD is the maximum
surface distance between the surfaces of two
contours. Herein, due to the sensitivity of HD

J Biomed Phys Eng 2025; 15(6)
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to outliers, 95% HD was also computed, which
is the 95™ percentile of the distances between
the surfaces of the contours. The ASSD is the
average difference of all the distances between
two contours. The ASSD value of 0 indicates
perfect segmentation.

2x|ANB
Dsc(A,B)Z% (1)
|4 B
JI(A4,B) =m ()
ASSD(A,B) = - JerB {;min(d(a,b))#—bszgmin(d(a,b))} (3)
HD(A,B)=max(h(A,B),h(B,A)) (4)
95% HD( A,B) =95" percentileof (h(A,B),h(B,4))(5)
Procisi |4 B| ©
recision =
3]
Sensitivit |4 B )
enstivity =
|4

Where, A and B indicate the manually
delineated mask and the auto-segmented

Axial

Coronal

mask, respectively. Further, a and b are indi-
vidual voxels for ground truth and predicted
contours, respectively, and h(A, B) is the
directed Hausdorff distance from A to B.

Statistical analysis

SPSS Statistics V.22.0 software (SPSS Inc.,
IBM, Chicago, USA) was used for statistical
analysis. The normal distribution of data was
investigated by the Kolmogorov—Smirnov
test. The Wilcoxon signed-rank test was used
to assess the statistical differences between
DVH parameters for plans generated manu-
ally and the nnU-net delineated contour. Sta-
tistical significance was determined when the
P-value was below 0.05 (P-value <0.05).

Results

The segmentation using the 3D nnU-net
took an average of 100 s per input volume on
the standard PC with a GeForce GTX 8 GB
NVIDIA and 32 GB RAM. Figure 2 repre-
sents manually delineated contours as ground

Sagittal

Figure 2: Axial, coronal, and sagittal slices of Computed Tomography (CT) images for three
test cases indicating radiation oncologist delineated contours as the ground truth (red) and
automatically segmented contours by the nnU-net (yellow).
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truth and automatically generated delinea-
tions of the prostate, seminal vesicle, lymph
nodes, femoral heads, rectum, and bladder for
three test patients. The comparison of organ
volumes delineated by radiation oncologists
as the ground truth and automatic segmenta-
tion based on our proposed deep CNN meth-
od is presented in Table 1. It is obvious that
the volumes defined by the nnU-net model
are similar to the volumes defined by manual
segmentation as the standard ground truth.
Table 1 shows a statistically significant dif-
ference in seminal vesicle volumes between
manual and automatic delineation.

Table 2 summarizes the DSC, JI, HD, 95%
HD, ASSD, precision, and sensitivity of the
proposed model on the testing set. Mean

Table 1: Comparison of organ volumes
between manual and automatic segmenta-
tions on the 23 testing patients (meantSD)

Site Ground nnU-net P-value
truth

Prostate 27574 26.115.6 0.249
Seminal vesicle  11.6+6.2 9.1+4.0 0.002
Lymph nodes  289.4+90.2 312.3£78.3 0.199
Rectum 69.5+234  66.8+24.6 0.108
Bladder 237.9+128.3 237.8+129.1  0.548
Left femur 175.5429.6  174.9+30.1 0.884
Rightfemur ~ 174.5+28.6 173.5+26.1 0.148

(standard deviation (SD)) DSCs of 0.82
(0.09), 0.69 (0.17), 0.77 (0.07), 0.90 (0.03),
0.97 (0.02), 0.96 (0.03), and 0.96 (0.01) were
achieved for the prostate, seminal vesicle,
lymph nodes, rectum, bladder, left femur head,
and right femur head, respectively. As shown in
Table 2, the highest performance was found
for the bladder. As can be seen in Table 2,
the nnU-net achieved a slightly worse perfor-
mance for prostate, lymph nodes, and subse-
quently seminal vesicle. Figure 3 shows over-
all box and whisker plots of DSC, JI, ASSD,
95% HD, and HD for prostate, seminal vesi-
cle, lymph nodes, rectum, bladder, left femur,
and right femur.

Tables 3 and 4 outline the dosimetric accura-
cy of the proposed deep CNN-based segmen-
tation approach in comparison with results
achieved from manually delineated contours,
as reference. Figure 4 shows the DVH of a
test case for plans generated by the nnU-net
model and ground truth contours. No statis-
tically significant difference was observed
for prostate and seminal vesicles consider-
ing all dose-volume parameters. There was
a significant difference for the pelvic lymph
nodes considering all dose-volume parameters
(Table 3). There was no significant difference
for OARs, except femoral heads consider-
ing all dose-volume parameters, as shown in
Table 4.

Table 5 compares the performance of our

Table 2: Performance metrics of nnU-Net model for organ segmentation on testing set (meanzSD)

Site DSC Jaccard ASSD HD 95% HD Precision Sensitivity
Prostate 0.82£0.09 0.70£0.12 1.14+0.70 3.68+5.57  6.50+0.63  0.87+0.11 0.80+0.12
Seminal vesicle 0.69+0.17 0.5740.16 2.05+2.72 10.95+19.68 8.06+18.68 0.79+0.17  0.63+0.19
Lymph nodes 0.77£0.07 0.64+0.08 2.76+1.03 15.5+7.79  4.93+4.73 0.71£0.09  0.87+0.05
Rectum 0.90£0.03 0.82+0.05 1.09+0.58 10.04+6.87 3.16+£3.03 0.91+£0.04  0.90+0.05
Bladder 0.97+0.02 0.94+0.04 0.40+0.16 4134860 1.99£7.16 0.9740.02  0.96+0.02
Leftfemur ~ 0.96+0.03 0.92+0.05 0.51+0.13 3.95+3.36 1.67+145 0.96£0.05  0.95+0.02
Right femur ~ 0.96+0.01 0.93+0.02 0.58+0.03 3.85+2.61 1.53%£1.29 0.96+0.01  0.97+0.01

DSC: Dice Similarity Coefficient; ASSD: Average Symmetric Surface Distance; HD: Hausdorff Distance
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Figure 3: Box plots of quantitative metrics for nnU-Net model for prostate, seminal vesicle,
lymph nodes, rectum, bladder, left femur, and right femur segmentation. In each panel, the
bold line represents the median, the boxes represent the 25" and 75" percentiles, and whiskers
represent ranges not including outliers. Individual point is considered as outlier.

Table 3: Comparison of the dose-volume parameters of target volumes between the two
treatment plans optimized using nnU-net- and manually-delineated contours (meanzSD)

Organ AD__  (Gy) AD,, (Gy) AD,, (Gy) AV, (%)
Prostate -0.025+0.269 -0.089+4.356 -0.007+0.134 -0.281+0.841
Pelvic lymph nodes -1.573+£2.923 -2.136£5.670 -1.133£3.191 -1.698+3.509
Seminal vesicles -1.167+11.65 2.934+20.305 -4.633+15.282 -5.545+30.638

Bold values indicate that there is a statistically significant difference in lymph node dose-volume parameters between the manual
segmentation (ground truth) and the automatically generated contours (P<0.05)

proposed model with other state-of-the-art
models reported in the literature for pelvis or-
gan segmentation on the CT images according
to the DSC. Table 5 presents that our proposed
architecture has comparable performance with
other state-of-the-art models for multi-organ
segmentation in the pelvic area.

Discussion

Accurate delineation of targets and OARs
i1s known as a critical task in the radiothera-
py of prostate cancer. However, the quality
of the manual contouring depends on the ra-
diation oncologist’s knowledge and experi-
ence. Also, manual segmentation is prone to
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Table 4: Comparison of the dose-volume parameters of the organs at risks between manual and
automatic segmentation (mean+SD)

Organ AD_ (Gy) AD__(Gy) AD__ (Gy) AV, (%) AV, (%) AV, (%)
Rectum 0.304+0.900 -0.009+0.329 0.330+1.642 0.071+3.011 0.840+2.048 0.838+2.073
Bladder 003240428  0.050+0.158 0.251+0.887 0.618+2.096 0.142+1.569 0.084+1.404
Leftfemur  0.084+0.233  -0.249+0.979 0.202+0.456  0.158+0.408 0.016+£0.098 -0.010+0.028
Rightfemur ~ 0.098£0.206 -0.016+£1.714  0.198+0.311  0.175:0.821 0.12620.505 0.0750.354

Bold values indicate that there is a statistically significant difference in lymph node dose-volume parameters between the manual
segmentation (ground truth) and the automatically generated contours (P<0.05)
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Figure 4: Dose-Volume Histogram (DVH) of a test case for plans generated by nnU-Net model
and ground truth contours. a) Bladder, b) Seminal vesicle, ¢) Rectum, d) Pelvis lymph nodes, e)

Prostate, f) left femur, and right femur.

inter- and intra-rater variability. Besides, CT
images suffer from poor soft tissue contrast;
therefore, the contouring process can be more
challenging. To address the aforementioned
challenges, deep learning methods, a branch of
Al research, has emerged as a new promising
approach to directly generate contours over
the recent years. Deep learning-based con-
touring can generate accurate and reproduc-
ible delineation of structures in planning CT
images. Auto-contouring of targets and OARs
can reduce radiation-induced normal tissue
toxicity, leading to dose escalation in prostate
radiotherapy. Therefore, this study aimed to

assess the feasibility of a deep CNN model
for simultaneous multi-structure contouring in
prostate radiotherapy. Here, training of a 3D
nnU-net model has been accomplished with
success and used for auto-contouring on male
pelvic CT images. Also, the model’s perfor-
mance was evaluated based on both geometric
metrics and clinically relevant dose-volume
parameters. The obtained data showed that the
contours generated using the nnU-net model
had high overlap/agreement with manually de-
lineated contours as the standard ground truth.

The nnU-net model, a self-adapting ensem-
ble method, for simultaneous multi-structure

J Biomed Phys Eng 2025; 15(6)
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Table 5: Performance comparison of proposed model with the state-of-the-art models for pelvis
organs segmentation on the Computed Tomography (CT) images according to the Dice similarity

coefficient
Study/ year Method Cases Bladder Rectum Prostate Lymph Sen_unal Left  Right
nodes vesicles femur femur
Kawula et al./
2022 [13] 3D U-net 69 0.97 0.89 0.87
Balagopal et al./ AR L
2018 [34] 2D-3D U-net 136 0.95 0.84 0.90 0.96 0.95
Tong et al./
2021 [35] MTER-Net 200 0.96 0.86 0.86
Sultana et al./
2020 [36] 3D UNet-GAN 290 0.95 0.90 0.91
Wang et al./
2021 [37] 3D BCnet 313 0.93 0.92 0.89
Kijunen etal/ — Commercial 4, 0.93 0.84 0.82 0.80 0.72 068 069
2020 [38] DL-based AST ' ' ' : ' ' '
Present study 3D nnU-net 118 0.97 0.90 0.82 0.77 0.69 0.96 0.96

DL: Deep Learning; AST: Automatic Segmentation Tool

segmentation, was employed in prostate ra-
diotherapy. Moreover, the nnU-net shows a
streamlined workflow and eliminates the need
for time-consuming fine-tuning with accurate
and reproducible segmentation; therefore, it
has great potential for widespread use in the
clinic. In this study, the 3D nnU-net achieved
a satisfactory performance regarding the geo-
metric accuracy of the organ segmentations,
i.e., a high degree of similarity was observed
between manually and automatically delin-
eated contours. According to the Dice metric,
a performance comparison was conducted be-
tween our proposed auto-segmentation model
and other state-of-the-art models reported for
pelvis organ segmentation on the CT images,
as outlined in Table 5. It is also worth noting
that it is not a precise way to directly com-
pare our proposed deep learning model with
the reviewed methods for automated multi-
organ segmentation in the male pelvic area, as
different CT databases with different dataset
sizes, various CT scanners, different cancer
types, and different OAR contouring standards
were used in each study. Nevertheless, the

comparison summary proved that our pro-
posed architecture has similar or even better
performance for multi-organ segmentation in
the pelvic area. In this study, the most prom-
ising findings were observed for bladder and
femoral head contouring, followed by the rec-
tum, and prostate. More recently, Kawula et
al. applied 3D U-net for CT-based multi-organ
segmentation in prostate radiotherapy [13].
The results of their study showed that 3D U-net
achieved the best results for bladder segmenta-
tion with a mean Dice value of 0.97, followed
by the rectum (mean DSC: 0.89), and prostate
(mean DSC: 0.87) [13]. The highest segmen-
tation performance of the nnU-net model for
the bladder can be attributed to the simplic-
ity of its geometry and its considerable size.
Regarding bladder auto-segmentation, some
previous studies reported a wide range of Dice
values (67-93%) due to filling level and shape
[39-42]. Contouring of femoral heads gener-
ally is highly concordant, with a DSC range
of 90-95% [39-41, 43], which is in agree-
ment with our data (mean: 96%). One pos-
sible reason for this overlap can be explained
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by the good contrast of femoral heads with
the surrounding structures and a well-defined
regular shape. The low contrast of the lymph
nodes, seminal vesicles, prostate, and rectum
on the CT images results in their contouring
being most challenging. In the present study,
automated segmentation of seminal vesicles
and pelvic lymph nodes had the lowest Dice
values of 69% and 77%, respectively. The
seminal vesicles have a small volume and are
placed in regions with high anatomical varia-
tion. The lymph nodes have more variety in
size, boundaries, and localization; hence, their
segmentation is very challenging. Balagopal
et al. proposed a 2D-3D hybrid network for
fully automated multi-organ delineation in
male pelvic CT images and obtained a DSC of
0.90, 0.95, and 0.84 for prostate, bladder, and
rectum, respectively [34]. In another study,
Tong et al. applied the edge-calibrated multi-
task network for male pelvic multi-structure
contouring on CT images, achieving an over-
all Dice score of 0.89 for bladder, rectum, and
prostate segmentation [35]. The UNet-GAN
hybrid model developed by Sultana et al. ob-
tained a Dice score of 0.91 for prostate [36].
As observable in various studies, the bladder
obtained the highest segmentation accuracy.
The novelty of this study lies in the follow-
ing: 1) the proposed model contoured both
OARs and target volumes. As observable in
Table 5, most existing studies have only con-
toured the prostate, rectum, and bladder. Here,
not only the prostate as the target volume, but
also seminal vesicles and lymph nodes were
contoured. In addition, all OARs (i.e., rectum,
bladder, and femoral heads) were contoured;
2) both geometric and DVH were applied to
assess delineation accuracy between the au-
to-generated contours and the ground truths
of clinicians’ contouring as the standard of
reference. In general, the evaluation of the
performance of auto-segmentation models is
based on commonly used geometric metrics,
such as DSC and HD. Geometric metrics are
not directly associated with the treatment plan

dosimetry; therefore, it is challenging to as-
sess the accuracy and effectiveness of auto-
mated segmentations in dose optimization
and plan evaluation. The performance of the
nnU-net model was assessed by considering
not only geometric metrics but also clinically
relevant dose-volume parameters. In overall, a
high level of agreement was observed between
the results obtained from the planning based
on manually and automatically segmented
contours. A statistically significant difference
was observed for the femoral heads and lymph
nodes. Few studies have investigated the dosi-
metric effect of auto-generated contours [13].
It is worthwhile to mention that auto-con-
touring algorithms can generate reliable seg-
mentations in a short time, as compared to
manual delineation, which may take 20-30
min. Previous studies highlighted the time-
saving benefit of the nnU-net model [44-46].
A previous study found that the nnU-net mod-
el required approximately 20s and 15s to seg-
ment the whole breast and the fibro-glandular
tissue under the dynamic contrast-enhanced
magnetic resonance images, respectively [46].
In the current study, the 3D nnU-net model
took approximately 100s to segment an input
CT volume using a standard PC with a Ge-
Force GTX 8 GB NVIDIA and 32 GB RAM.
The present study has some limitations, as
follows: 1) the utilization of a restricted datas-
et, so that deep learning models require a large
number of subjects for training. A more robust
and stable deep CNN model should be trained
and tested on large multi-center datasets and
2) memory and computation power. The pro-
posed network’s performance can be improved
with advanced memory and computational
power. Besides, a single radiation oncologist
delineated all contours as ground truth. It is
important to point out that in real-world clin-
ics inter-observer variations are known to exist
among physicians, and no 100% gold standard
is found. Currently, the proposed models can
be applied as a supportive tool for radiation
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Conclusion

In this study, the feasibility of auto-contour-
ing was evaluated using a deep CNN approach
for CT-based targets and OAR segmentation.
The performance of the deep CNN auto-seg-
mentation tool was assessed using manually
delineated contours by an experienced radia-
tion oncologist as ground truth. Our results
indicated that the 3D nnU-net architecture can
be successfully used for multi-organ segmen-
tation in the male pelvic area. No statistically
significant difference was in dosimetric end-
points of targets and OARs except for lymph
nodes and femoral heads between treatment
plans based on manually and automatically
segmented contours. The proposed model has
the potential to decrease radiation oncologist’s
workload by reducing the segmentation time
required to generate acceptable contours. The
integration of the proposed framework into
current clinical practice may increase the ef-
ficiency of the RT workflow. The proposed
model shows promise as an automated tool for
further auto-segmentation workflow studies in
RT.
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