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Introduction

The term “Trauma” is employed to characterize injuries that result 
in substantial physical and psychological harm [1]. Injuries can 
result from various causes, such as car accidents, falls, drowning, 

burns, self-harm, or violence toward oneself or others [1] that some of 
them (29%) were associated with road incidents [2]. Road fatalities in 
low-income and developing nations have consistently exceeded those in 
developed countries, as highlighted in the 2018 global status report on 
road safety [3].

The variation in mortality rates across different locations and countries 
also corresponds to disparities in the demographics of individuals most 
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ABSTRACT
Background: By analyzing information from trauma centers, hospitals can identify 
crucial performance indicators that affect budgets and present growth opportunities, 
potentially leading to lower mortality rates and improved health status indicators. 
Objective: This study aims to determine the best-supervised algorithm for  
diagnosing the discharge status of trauma patients.
Material and Methods: This retrospective study used the data, collected by 
the Kashan Trauma Registry from March 2018 to February 2019. Several supervised 
algorithms, including Naive Bayes, Logistic Regression, Support Vector Machine, 
Random Forest, and K-Nearest Neighbors, have been evaluated for predicting the 
discharge status of trauma patients. The performance metrics of accuracy, precision, 
recall, and F-measure were used. The hold-out technique was applied to train the data. 
Results: The Random Forest algorithm had the best performance among the other 
algorithms. The best accuracy, precision, recall, and F-measure for Gini index were 
84/2%, 79/7%, 78/3%, and 76.4%, and for information gain were 84.6%, 79.6%, 
76.8%, and 76/20%, respectively.  
Conclusion: The results of this research showed that the supervised algorithms, 
with proper parameter settings, can help diagnose the discharge status of trauma pa-
tients. In addition, data balancing can help improve the performance of the algorithms. 
However, this claim cannot be generalized because it depends on the type of algorithm 
and the values of the parameters.
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affected while traveling on roads. Globally, 
pedestrian and cyclist fatalities contribute to 
26% of all deaths, while motorized two- and 
three-wheeled vehicle-related fatalities ac-
count for an additional 28%. Car occupants 
make up 29% of the fatalities, while the re-
maining 17% are attributed to unidentified 
road users. In Africa, pedestrians and cyclists 
constitute the largest proportion of fatalities, 
accounting for a significant 44% of all deaths. 
In SouthEast Asia and the Western Pacific, 
motorized two- and three-wheeled vehicle 
riders account for the majority of fatalities,  
comprising 43% and 36% respectively [4].

Conversely, the discharge outcomes of trau-
ma patients involve various factors, including 
the length of hospitalization, rates of mortal-
ity, rates of readmission, and the distinction 
between discharge to home and discharge to 
healthcare facilities [5-8].

Through a research investigation conducted 
in the United States, an examination was made 
into the discharge practices at trauma centers, 
revealing the factors that influence post-hos-
pital disposition. The study revealed that pa-
tient characteristics, such as race, insurance 
status, and injury severity, played a predictive 
role in determining the type of care received 
after hospitalization. Notably, individuals with 
self-pay status and Black patients exhibited a 
diminished likelihood of being discharged to 
secondary care facilities [6]. In another study, 
the relationship between discharge destination 
and the 30-day readmission rate among elderly 
trauma patients was explored. The findings in-
dicated that being discharged to extended care 
and inpatient rehabilitation facilities indepen-
dently posed risk factors for hospital readmis-
sions within this demographic [8].

In 2009, the World Health Organization 
(WHO) published a comprehensive guide 
aimed at improving the quality of trauma 
treatment. The primary objective of this guide 
was to reduce the mortality rate resulting from 
trauma in low- and middle-income countries, 
while drawing inspiration from successful 

strategies implemented in other regions [9]. 
Emphasized within this document was the  
necessity to establish hospital trauma care sys-
tems and implement quality assessment pro-
grams to ensure the provision of high-quality 
care. Among the various instruments utilized 
for quality assessment, the trauma registry was 
identified as the most crucial [9]. For several 
decades, trauma registries have played a piv-
otal role in the trauma systems of high-income 
countries, with substantial evidence support-
ing their numerous benefits. These registries 
have significantly enhanced the methods of 
record-keeping and are commonly utilized to 
demonstrate the advantages associated with 
trauma systems [10]. 

Machine Learning (ML) plays a crucial role 
in the healthcare industry, enabling the discov-
ery of new knowledge and the identification 
of patterns to inform decision-making. This 
cutting-edge field aims to extract valuable 
and essential information from vast datasets. 
Analytical methods are necessary to identify 
crucial information for decision-making in 
healthcare data. The application of ML of-
fers several benefits, including disease detec-
tion, management, and prevention, as well as 
cost reduction in medical care. It also assists 
in formulating efficient healthcare policies, 
developing patient recommendation systems, 
and creating health profiles. The healthcare 
industry generates significant amounts of 
data, so maintaining accurate patient diagno-
sis and treatment requires effective database  
management [11].

The complexity and volume of healthcare 
data make it challenging to extract meaningful 
insights about patients’ health status. This data 
encompasses various aspects such as therapy 
costs, hospitals, medical claims, patients, phy-
sicians, and medical history. ML techniques 
are crucial for analyzing and drawing con-
clusions from such complex data to improve 
patient care and management. ML can aid in 
the classification of patients’ disorders, as-
sist in treatment and management, predict  
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hospital admission duration, and maintain 
accurate management information systems. 
Current technologies and ML approaches are 
helping reduce costs and identify factors con-
tributing to diseases [12]. ML techniques have 
found extensive applications in the healthcare 
field, including predicting the development of 
type 2 diabetes [13], diagnosing breast cancer 
[14], indicating chronic diseases [15], solving 
multi-object fusion detection problems in e-
healthcare [16], analyzing COVID-19 through 
clustering algorithms [17], evaluating health-
care facility performance [18], and enhanc-
ing mutual privacy in healthcare IoT systems 
through clustering strategies [19]. 

ML has also been extensively utilized in 
the field of trauma and injury. For example,  
Bruschetta et al. conducted a study comparing 
different ML algorithms and a classical linear 
regression model to evaluate traumatic brain 
injury patients at different time points [20].

Kuo et al. aimed to develop and validate ML 
models for predicting the mortality of hospital-
ized motorcycle riders using Logistic Regres-
sion (LR), Support Vector Machine (SVM), 
and Decision Tree (DT) analyses [21]. Feng et 
al. compared the predictive abilities of twen-
ty-two ML models with a LR model, using 
performance measures such as Receiver Op-
erating Characteristic (ROC), Area Under the 
Curve (AUC), accuracy, F-score, precision, re-
call, and decision curve analysis [22]. Anoth-
er research focused on evaluating diagnostic 
accuracy for traumatic brain injury in elderly 
patients using various ML algorithms [23].  
Rau et al. predicted patient deaths using  
LR, SVM, DT, Naive Bayes (NB), and artifi-
cial neural network models [24].

ML has diverse applications in trauma regis-
try systems, encompassing patient classifica-
tion, predictive modeling, data analysis, and 
system integration. For instance, ML models 
have demonstrated high prognostic perfor-
mance and medical validity in predicting re-
covery post-trauma [25]. These models have 
also been utilized to anticipate blood product 

transfusion needs in pediatric patients under-
going craniofacial surgery [26]. Furthermore, 
ML has been applied to identify geospatial 
and structural factors influencing youth vio-
lence [27] and predict the risk of prolonged 
mechanical ventilation for patients with trau-
matic brain injury [28]. Finally, ML has been 
applied to surgical imaging for diagnosing and 
treating spine disorders [29].

Research indicates that supervised algo-
rithms are increasingly being used in trauma 
treatment; despite these studies, no conclusive 
evidence has been found. 

The algorithms that showed acceptable per-
formance were LR, SVM, and Random Forest 
(RF). This study focused on supervised meth-
ods to diagnose the discharge status of trauma 
patients because Kashan Trauma Registry data 
are local, and ML has not been applied to them.

The current study will address these ques-
tions at the conclusion of this study:

Among the different algorithms used to clas-
sify trauma patients, which one performed 
better at predicting their discharge status? 
How does data balancing affect algorithm per-
formance? Which of the following indicators 
of accuracy, precision, recall, and F-measure 
is most influenced by data balancing?

Material and Methods
It is a retrospective study of patients who 

have received trauma treatment at the Kashan 
Trauma Center. A specific time frame of  
patient treatment at the Kashan Trauma Cen-
ter is scrutinized in this study. In order to im-
prove trauma care, supervised algorithms are 
employed to analyze the discharging status 
of trauma patients, distinguishing between  
those who have improved and those who 
haven’t.

Dataset
Data from the Kashan Trauma Registry was 

collected between March 2018 and February 
2019. We removed noisy data and outliers  
after data collection. We excluded missing 
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data, split the data, and then balanced these 
classes based on Synthetic Minority Over-
sampling Technique (SMOTE) (Figure 1). 
A total of 3,930 records were obtained after 
preprocessing the data. We categorized fea-
tures numerically and categorically (Table 
1). The class label was based on the patient’s 
discharge status, which was either improved 
(2,642) or non-improved (1,288).

Algorithm selection
During the learning step, a classification 

model is built, followed by the classification 
step, a two-part procedure for classifying data 
(using the model to predict class labels). In 
the first stage, a classifier is built to describe 
a preset set of data classes or concepts. Dur-
ing the training phase of the learning stage, a 
classification algorithm creates the classifier 
by “learning from” a training set of database 
tuples and their associated class labels. Since 
each training tuple has a class label, this pro-
cess is also known as supervised learning; As a 
result, the classifier’s learning is “supervised” 

Figure 1: Implementation Framework (SMOTE: Synthetic Minority Over-sampling Technique, 
SVM: Support Vector Machine, KNN: K-Nearest Neighbors)

Numerical 
variables

- Age 
- Total expenditures 
- The number of days admitted

Categorical 
variables

- Place birth 
- Type of insurance 
- Sex 
- Occupation 
- Education 
- Type of conveyance carrying to        

emergency 
- ICD-injuries 
- ICD-external causes  
- State of discharge

ICD: International Classification of Diseases

Table 1: Trauma dataset features after  
preprocessing

since it knows to which class each training tu-
ple belongs [30, 31]. The following are some 
descriptions of supervised algorithms used in 
this article.
1. SVM
SVM is a supervised ML model that can be 

utilized for both regression and classification 
tasks. A key advantage of SVMs is their use 
of kernels, mathematical functions that proj-
ect input data into higher-dimensional feature 
spaces to facilitate separation between classes 
[32-34]. This projection into hyperspace en-
ables SVM to construct optimal separating 
hyperplanes between data points of different 
class labels, improving generalizability and 
classification accuracy. By effectively sepa-
rating complex and nonlinear data, SVMs can 
generate robust predictive models.
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2. KNN
The K-Nearest Neighbors (KNN) algorithm 

is a nonparametric, supervised ML technique 
used for both classification and regression 
predictive modeling. Unlike parametric al-
gorithms, KNN does not make assumptions 
about the underlying statistical distribution 
of the data. A key hyperparameter, k, must be 
predefined to specify the number of neighbors 
examined during prediction. To determine 
neighbors, KNN utilizes distance metrics to 
quantify the similarity between data points, 
with common choices being Euclidean dis-
tance, Manhattan distance, cosine similar-
ity, and Jaccard distance [33, 35]. A key ad-
vantage of KNN is that it adapts to the local 
structure of the data, classifying new points 
based on their proximity to points in the  
training set.
3. Naive Bayes
The NB classifier is a probabilistic ML algo-

rithm for categorical data predicated on Bayes’ 
theorem. It relies on the simplifying assump-
tion that predictor variables are conditionally 
independent given the class label - the “naive” 
conditional independence assumption. Despite 
this oversimplification, NB has demonstrated 
high predictive performance, especially when 
dealing with high-dimensional feature spaces 
[34, 36]. As it requires relatively few train-
ing data to estimate parameters, NB is an ef-
ficient and effective supervised learning tech-
nique for multivariate classification tasks. The 
algorithm calculates posterior probabilities 
for each class and assigns new data points to 
the most probable class. Though naive, this 
Bayesian approach has proven surprisingly  
robust and applicable across multiple domains.
4. Logistic Regression
LR is a statistical technique for modeling 

the relationship between a categorical depen-
dent variable and one or more independent 
predictor variables, which may be continuous 
or categorical [37, 38]. It estimates the prob-
ability of particular outcomes, most often bi-
nary, based on logistic functions of the linear  

predictor. LR facilitates explanatory model-
ing and prediction of categorical response  
variables.
5. Random Forest
RF is an ensemble ML algorithm that can be 

utilized for both regression and classification 
tasks. It operates by constructing a multitude 
of DT during training and aggregating their 
individual predictions, thereby improving  
predictive performance and reducing overfit-
ting compared to single DT models [34, 39, 
40]. To determine the optimal feature split at 
each node when building individual trees, RF 
employs metrics such as information gain, 
Gini impurity, and gain ratio. By training each 
tree on a random subset of features and data 
points, the resulting forest model incorporates 
diversity while capitalizing on averaging to 
enhance generalization capability. The algo-
rithm’s combination of bagging and random 
feature selection yields robust and accurate 
predictions.
6. SMOTE
SMOTE is a data preprocessing approach 

that handles class imbalance in ML datasets 
where one class is underrepresented compared 
to others [41, 42]. Algorithms can struggle to 
adequately learn patterns and properties of the 
minority class due to insufficient instances. To 
mitigate this, SMOTE synthetically generates 
new minority class examples by interpolating 
between existing minority data points in fea-
ture space [42, 43]. Augmenting the minority 
class via oversampling improves class bal-
ance and enhances model performance on the 
rare class. By compensating for skewed class 
distributions, SMOTE facilitates more robust 
learning from imbalanced data.

Implemented framework
Various supervised ML models were imple-

mented for binary patient diagnosis, includ-
ing SVM with linear, Radial Basis Function 
(RBF), and polynomial kernels; KNN algo-
rithm with Manhattan, Euclidean, Jaccard, 
Chebyshev, and cosine distance metrics and 
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varying k values; NB; LR; and RF with in-
formation gain, gain ratio, and Gini impurity 
criteria. Algorithms were implemented using 
Python and Jupyter Notebook.

The dataset was partitioned into 70% train-
ing, 15% testing, and 15% validation sets 
using the hold-out method to enable robust 
model development, rigorous evaluation, 
and reliable performance validation. To ad-
dress the class imbalance in the training data, 
the SMOTE was applied at sampling rates of 
0.5, 0.75, and 1.0 to synthetically generate  
additional minority class instances.

Evaluation
A confusion matrix is a summarizing the 

performance of a classification ML model by 
tabulating its True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Neg-
ative (FN) predictions [44, 45]. The confusion 
matrix facilitates the evaluation of key classi-
fication metrics including accuracy, precision, 
recall, and F1-score.

The four confusion matrix categories are 
[44, 45]:

TP: Correctly predicted non-improved  
instances

TN: Correctly predicted improved instances
FP: Incorrectly predicted as non-improved 

when improved
FN: Incorrectly predicted as improved when 

non-improved
By condensing results into a confusion  

matrix, model performance on binary classifi-
cation tasks can be visualized and quantified.

( )
( )

TP  TN
Accuracy  

TP  TN  FP  FN
+

=
+ + +            (1)

( )
TP Precision  

TP  FP
=

+
                                  (2)

( )
TPRecall 

TP  FN
=

+
                                        (3)

( )
( )

2  Precision  Recall
F measure 

Precision  Recall
× ×

− =
+

  (4)

A confusion matrix with high accuracy  

indicates the model correctly classified a sub-
stantial proportion of samples [34, 44, 45]. 
However, accuracy alone can be misleading, 
especially with imbalanced datasets where 
one class predominates. While high accuracy 
is desirable in a confusion matrix, additional 
metrics should be examined for comprehen-
sive model evaluation. High recall signifies 
the model correctly identified most actual 
positives, while high precision indicates few 
false positives were produced. A high F1 
score demonstrates proficiency in both preci-
sion and recall, balanced by the F1 measure. 
Consequently, accuracy, precision, recall, 
and F1 score were calculated to evaluate the 
performance of the implemented algorithms. 
Though accuracy provides an overall measure 
of correct predictions, precision, and recall 
offer deeper insight into positive and nega-
tive classification capabilities on imbalanced 
data. The F1 score synthesizes precision and 
recall into a singular metric, facilitating model  
selection and performance benchmarking.

Therefore, we calculated the algorithms’  
accuracy, precision, recall, and F-measure.

Results
Table 2 presents the dataset partition sizes 

for training, validation, and testing based on 
the 70/15/15 hold-out split. This allocated 
2,751 records for training, 589 for validation, 
and 590 for testing. After SMOTE oversam-
pling of the training set at rates of 50%, 75%, 
and 100%, the validation and testing parti-
tions remained unchanged while the train-
ing set increased in size as shown in Table 2. 
Oversampling enabled compensation for class  
imbalance in the training data only, while pre-
serving untouched validation and test sets for 
unbiased model evaluation.

The results of executing the algorithms on 
the test and validation data using SMOTE are 
shown in Tables 3 and 4. Among the KNN 
models, K=10 yielded the best performance.

The validation data (Table 3) showed SVM 
achieved a maximum accuracy of 81.5% with 
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the linear kernel and SMOTE 100%. The lin-
ear kernel with SMOTE 75% also yielded the 
highest precision of 81.5%. Additionally, the 
linear kernel coupled with SMOTE 100% pro-
duced the top recall of 64.8% and the F1 score 
of 68.4%.

For KNN, Euclidean and Manhattan distanc-
es attained a peak accuracy of 80% without 
SMOTE. Manhattan distance without SMOTE 
also achieved the highest precision of 79.1%. 
SMOTE 100% enabled the maximum recall 
of 78% based on the Jaccard index. An F1 
value of 63.6% was obtained using Manhattan  
distance and SMOTE 75%.

With NB, the best accuracy of 65.9% and 
precision of 46.2% resulted from no SMOTE 
and SMOTE 50%. SMOTE 100% generated 
the highest recall of 78% and F1 score of 
62.1%.

LR achieved its maximum accuracy of 81% 
using SMOTE 50%. The same configuration 
yielded the top precision of 79.3%. SMOTE 
100% produced the highest recall of 76.4% 
and F1 of 67.4%

RF attained its best accuracy of 86.2% and 
precision of 82.2% with the Gini index and 
SMOTE 50%. Top recall of 76.4% was seen 
with SMOTE 100% and 75% for Gini and In-
formation indexes. The maximum F1 of 77% 
occurred using the Information index and 
SMOTE 75%.

The test data results (Table 4) showed SVM 
achieved its highest accuracy of 80.8%, recall 

of 67.2%, and F1 of 70.2% using the linear 
kernel and SMOTE 100%. The linear kernel 
with SMOTE 50% yielded the maximum pre-
cision of 85.8%.

In KNN, cosine distance with SMOTE 50% 
produced the top accuracy of 79.2%. The high-
est precision was 74.5% without SMOTE for 
Euclidean distance and with SMOTE 50% for 
Manhattan distance. SMOTE 100% enabled 
the maximum recall of 77.3% per the Jacca-
rd index. Cosine distance with SMOTE 50% 
achieved the highest F1 of 65.2%.

With NB, no SMOTE yielded the best accu-
racy of 64.7% and precision of 48.2%. SMOTE 
100% generated a peak recall of 75.8% and F1 
of 57.3%.

For LR, SMOTE 75% achieved the maxi-
mum accuracy of 78.8%. SMOTE 50% yield-
ed the highest precision of 73%. Top recall of 
71.7% and F1 of 68.1% resulted from SMOTE 
100%.

In RF, an equal high accuracy of 84.6% 
occurred with and without SMOTE 50% us-
ing the information gain index. The Gini  
index attained its best precision of 79.7% with 
SMOTE 50%. Additionally, SMOTE 100% 
enabled the maximum recall of 78.3% and F1 
of 76.4% for the Gini index.

Discussion
Trauma and injury registration encom-

passes the collection of prehospital data and 
demographic information pertaining to the  

Balancing Split dataset
The number of class 

1 records
The number of 
class 2 records 

Before Balancing
Train 908 1843

Validation 182 407
Test 198 392

After Balancing
Train_resampled (100%) 1843 1843
Train_resampled (75%) 1382 1843
Train_resampled (50%) 921 1843

Table 2: Partitioning of data before and after balancing
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C
riteria

B
alancing 

(%
)

SVM
K

N
N

N
B

 
(%

)
LR

 
(%

)

R
F

Linear 
(%

)
Polynom

ial 
(%

)
R

B
F 

(%
)

Euclidean 
(%

)
M

anhattan 
(%

)
C

hebyshev 
(%

)
C

osine 
(%

)
Jaccard 

(%
)

G
ini 

(%
)

Inform
ation-

G
ain (%

)

Accuracy

SMOTE (100)
81/5

72/5
70/3

73/9
74/5

72/0
72/8

70/6
64/2

78/6
84/4

85/6

SMOTE (75)
83/0

72/0
71/5

76/9
77/4

72/3
75/9

73/2
64/7

78/8
85/6

85/9

SMOTE (50)
80/0

73/3
73/5

79/6
79/6

72/2
78/6

74/2
65/9

81/0
86/2

85/6

SOMTE (0)
79/3

73/3
73/3

80/0
80/0

72/2
78/8

72/5
65/9

80/6
85/6

85/9

Precision

SMOTE (100)
72/4

55/4
51/7

55/9
57/0

59/6
54/7

51/6
45/3

63/7
73/9

77/1

SMOTE (75)
81/5

55/1
54/4

62/1
63/4

63/0
60/3

55/7
45/4

65/7
78/0

77/7

SMOTE (50)
81/4

59/8
60/8

76/7
77/7

70/5
72/6

59/3
46/2

79/2
82/2

81/7

SOMTE (0)
80/6

59/8
60/7

78/1
79/1

70/5
73/2

57/5
46/2

79/3
79/8

81/9

Recall

SMOTE (100)
64/8

56/6
57/7

73/1
71/4

29/1
70/3

78/0
76/4

71/4
76/4

75/8

SMOTE (75)
58/2

50/5
47/3

64/8
63/7

25/3
64/3

64/8
70/9

65/4
74/2

76/4

SMOTE (50)
45/6

41/8
40/1

48/9
47/8

17/0
49/5

52/7
63/7

52/2
70/9

68/7

SOMTE (0)
43/4

41/8
39/0

48/9
47/8

17/0
49/5

42/3
63/7

50/5
71/4

69/8

F-Measure

SMOTE (100)
68/4

56/0
54/5

63/3
63/4

39/1
61/5

62/1
56/9

67/4
75/1

76/5

SMOTE (75)
67/9

52/7
50/6

63/4
63/6

36/1
62/2

59/9
55/4

65/6
76/1

77/0

SMOTE (50)
58/5

49/2
48/3

59/7
59/2

27/4
58/8

55/8
53/6

62/9
76/1

74/6

SOMTE (0)
56/4

49/2
47/5

60/1
59/6

27/4
59/0

48/7
53/6

61/7
75/4

75/4

SV
M

: Support Vector M
achine, K

N
N

: K
-N

earest N
eighbors, N

B
: N

aive B
ayes, LR

: Logistic R
egression, R

F: R
andom

 Forest, SM
O

TE: Synthetic M
inority O

ver-sam
pling Technique, 

R
B

F: R
adial B

asis Function

Table 3: Perform
ance of algorithm

s based on the Confusion m
atrix criteria for different balances (Validation dataset)
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C
riteria

B
alancing 

(%
)

SVM
K

N
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R
F
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)
Polynom
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(%

)
R

B
F 

(%
)

Euclidean 
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)
M

anhattan 
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)
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hebyshev 
(%

)
C

osine 
(%

)
Jaccard 

(%
)

G
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(%
)

Inform
ation-

G
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)

Accuracy

SMOTE (100)
80/8

72/2
71/9

73/2
73/6

71/7
72/5

70/2
62/0

77/5
83/7

82/4

SMOTE (75)
80/0

72/2
71/5

75/9
76/3

72/5
75/9

70/7
62/9

78/8
83/9

83/4

SMOTE (50)
80/2

71/5
72/2

78/3
78/5

71/5
79/2

73/6
64/4

77/5
84/2

84/6

SOMTE (0)
79/8

72/0
72/0

78/5
78/6

71/5
78/8

72/4
64/7

77/3
84/2

84/6

Precision

SMOTE (100)
73/5

57/5
57/3

58/5
58/8

66/7
57/6

53/9
46/0

64/8
74/5

72/4

SMOTE (75)
77/0

58/7
58/1

64/0
64/5

73/1
63/9

55/4
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62/0
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66/2
63/6

69/7
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31/3
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77/3
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71/7
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57/6

58/1
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64/6
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65/2
72/7

67/2
74/2

74/7
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49/0

45/5
43/4

54/5
54/5

23/2
58/1

61/1
67/7

52/0
71/2

73/7

SOMTE (0)
48/0

46/0
42/9

54/5
54/5

23/2
57/1

49/5
67/7

51/5
71/2
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61/5
60/3

63/6
64/2
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68/1
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58/4
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41/3
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56/8

68/0
75/6

75/1

SMOTE (50)
62/4

51/7
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35/4
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54/6
56/3

60/4
75/2

76/0
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Table 4: Perform
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occurrence of the injury. The WHO has rec-
ommended the utilization of this data for the 
purpose of effectively managing these patients 
and enhancing the standard of care provided to 
them [9]. The quantity of data in our progres-
sively digitalized world is experiencing expo-
nential growth, and big data analytics repre-
sents both a burgeoning trend and a prominent 
area of study. The algorithms employed in ML 
grant access to analyses, enabling the detection 
and prediction of disease existence, as well as 
aiding medical professionals in decision-mak-
ing by facilitating early disease identification 
and appropriate therapy selection. 

Based on the outcome of the present study, 
the optimal outcomes were observed with 
SVM, RF (depth=10), and KNN algorithms in 
which linear kernels were used, along with the 
Gini index and Information Gain, as well as 
the Euclidean and Manhattan distances with k 
set to 10.

In the majority of algorithms, SMOTE 
with a 50% oversampling rate yielded higher  
accuracy compared to SMOTE with a 75% 
oversampling rate and SMOTAE with a 
100% oversampling rate. The precision met-
ric showed suboptimal performance with 
SMOTAE (75%) and SMOTE (100%) in 
most algorithms. Furthermore, recall, and F-
score exhibited an upward trend across most 
algorithms as the number of balanced records  
increased.

Nevertheless, it cannot be definitively con-
cluded that SMOTE had a uniformly positive 
or negative impact on all indicators simulta-
neously. In certain algorithms, the application 
of SMOTE appeared to be necessary, while in 
others, better results were achieved without 
utilizing SMOTE.

A notable finding in our study was that  
NB was the algorithm with the weakest per-
formance, whereas RF was the algorithm with 
the best performance.

In the study conducted by Bruschetta et al. 
[20] the performance of SVM, KNN, NB, DT 
algorithms, and an ensemble ML approach 

was compared individually. The results in-
dicated that the NB algorithm exhibited the 
poorest performance when a two-class out-
come (positive or negative) was employed. 
Similarly, in the current study, NB was also 
among the algorithms that demonstrated  
relatively inferior performance.

The ML techniques can be utilized to pre-
dict the mortality of motorcycle riders with 
a reasonable level of accuracy [21]. By in-
tegrating a ML model, particularly the 
SVM algorithm, into the trauma system, it 
may be possible to identify high-risk pa-
tients and guide clinical staff towards the 
most suitable interventions. In the current 
study, the SVM algorithm with the linear  
kernel exhibited satisfactory performance.

In the study conducted by Feng et al. it was 
found that the twenty-two ML models selected 
for outcome prediction in patients with Severe 
Traumatic Brain Injury (STBI) exhibited capa-
bilities comparable to the traditional LR model. 
Notably, the cubic SVM, quadratic SVM, and 
linear SVM models outperformed LR in terms 
of performance [22]. In the present study, SVM 
with a linear kernel was identified as the SVM 
algorithm with the highest performance. How-
ever, the RF algorithm (using the Gini-Index) 
demonstrated the best overall performance 
among all the algorithms tested, although the 
results obtained with LR were also deemed  
acceptable.

According to the findings of Abujaber 
et al. [46], the performance of the SVM  
algorithm surpassed that of traditional clas-
sical models employing conventional multi-
variate analytical approaches when predicting  
mortality in patients with Traumatic Brain  
Injury (TBI). In the current study, although 
the SVM (linear) algorithm exhibited rela-
tively good performance, it was not the top- 
performing algorithm.

Similar to the present study, the RF al-
gorithm showed the best performance, and 
LR yielded acceptable results. In a study 
by Wang et al. [23], it was reported that  
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prognostication tools utilizing Adaboost, RF, 
and LR algorithms proved beneficial for phy-
sicians in assessing the risk of poor outcomes 
in geriatric patients with TBI and in guid-
ing the selection of personalized therapeutic  
options. 

According to the findings of Matsuo et al. 
[47], both the RF and Ridge Regression algo-
rithms demonstrated the highest performance 
in predicting poor in-hospital outcomes and 
mortality in cases of TBI. Their research in-
dicates that modern ML techniques can effec-
tively predict the occurrence of TBI. Similar-
ly, in the current study, the RF algorithm was 
identified as the best-performing algorithm 
among the ones tested.

According to the conclusions drawn from 
this study, equalizing class features can ef-
fectively improve the performance of ML 
algorithms. However, it is important to note 
that the choice of algorithm, its parameters, 
and the quantity of added samples can di-
rectly impact the algorithm’s performance. 
Therefore, relying solely on accuracy values 
in scenarios with imbalanced data may not 
be feasible. The findings of this research sug-
gest the potential use of supervised algorithms 
for predicting the discharge status of trauma  
patients.

Despite the advantages of this study, there 
are some limitations to consider. First, the 
data used in the study is retrospective, and it 
was not possible to access the paper records 
to verify the quality of the electronic data. 
Additionally, in future research, alternative 
classification methods with different param-
eters, ensemble learning techniques, and  
clustering approaches could be explored to im-
prove the diagnosis of discharge status for trauma  
patients.

Conclusion
The registration of health data in health 

systems can benefit from the application of 
ML techniques, which can help health stake-
holders uncover hidden knowledge in the 

data and support them in decision-making 
and health prediction. While supervised al-
gorithms are valuable in diagnosing the dis-
charge status of trauma patients, the impact 
of data balancing on accuracy measures such 
as Precision, Recall, and F-measure varies 
across different algorithms. These measures 
do not consistently show a trend of increase 
or decrease. Therefore, optimizing the per-
formance of algorithms requires appropriate 
parameter settings. Balancing imbalanced 
data may improve algorithmic performance, 
but it is important to note that the effective-
ness of this approach depends on the specific  
algorithm and the parameter values assigned 
to it. In summary, the success of data balanc-
ing in enhancing algorithmic performance 
hinges on carefully considering algorithm  
characteristics and configuring parameters  
accordingly.
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