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ABSTRACT

Background: By analyzing information from trauma centers, hospitals can identify
crucial performance indicators that affect budgets and present growth opportunities,
potentially leading to lower mortality rates and improved health status indicators.

Objective: This study aims to determine the best-supervised algorithm for
diagnosing the discharge status of trauma patients.

Material and Methods: This retrospective study used the data, collected by
the Kashan Trauma Registry from March 2018 to February 2019. Several supervised
algorithms, including Naive Bayes, Logistic Regression, Support Vector Machine,
Random Forest, and K-Nearest Neighbors, have been evaluated for predicting the
discharge status of trauma patients. The performance metrics of accuracy, precision,
recall, and F-measure were used. The hold-out technique was applied to train the data.

Results: The Random Forest algorithm had the best performance among the other
algorithms. The best accuracy, precision, recall, and F-measure for Gini index were
84/2%, 79/7%, 78/3%, and 76.4%, and for information gain were 84.6%, 79.6%,
76.8%, and 76/20%, respectively.

Conclusion: The results of this research showed that the supervised algorithms,
with proper parameter settings, can help diagnose the discharge status of trauma pa-
tients. In addition, data balancing can help improve the performance of the algorithms.
However, this claim cannot be generalized because it depends on the type of algorithm
and the values of the parameters.
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Introduction
he term “Trauma” is employed to characterize injuries that result
in substantial physical and psychological harm [1]. Injuries can
result from various causes, such as car accidents, falls, drowning,
burns, self-harm, or violence toward oneself or others [1] that some of
them (29%) were associated with road incidents [2]. Road fatalities in
low-income and developing nations have consistently exceeded those in
developed countries, as highlighted in the 2018 global status report on
road safety [3].
The variation in mortality rates across different locations and countries
also corresponds to disparities in the demographics of individuals most
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affected while traveling on roads. Globally,
pedestrian and cyclist fatalities contribute to
26% of all deaths, while motorized two- and
three-wheeled vehicle-related fatalities ac-
count for an additional 28%. Car occupants
make up 29% of the fatalities, while the re-
maining 17% are attributed to unidentified
road users. In Africa, pedestrians and cyclists
constitute the largest proportion of fatalities,
accounting for a significant 44% of all deaths.
In SouthEast Asia and the Western Pacific,
motorized two- and three-wheeled vehicle
riders account for the majority of fatalities,
comprising 43% and 36% respectively [4].

Conversely, the discharge outcomes of trau-
ma patients involve various factors, including
the length of hospitalization, rates of mortal-
ity, rates of readmission, and the distinction
between discharge to home and discharge to
healthcare facilities [5-8].

Through a research investigation conducted
in the United States, an examination was made
into the discharge practices at trauma centers,
revealing the factors that influence post-hos-
pital disposition. The study revealed that pa-
tient characteristics, such as race, insurance
status, and injury severity, played a predictive
role in determining the type of care received
after hospitalization. Notably, individuals with
self-pay status and Black patients exhibited a
diminished likelihood of being discharged to
secondary care facilities [6]. In another study,
the relationship between discharge destination
and the 30-day readmission rate among elderly
trauma patients was explored. The findings in-
dicated that being discharged to extended care
and inpatient rehabilitation facilities indepen-
dently posed risk factors for hospital readmis-
sions within this demographic [8].

In 2009, the World Health Organization
(WHO) published a comprehensive guide
aimed at improving the quality of trauma
treatment. The primary objective of this guide
was to reduce the mortality rate resulting from
trauma in low- and middle-income countries,
while drawing inspiration from successful

strategies implemented in other regions [9].
Emphasized within this document was the
necessity to establish hospital trauma care sys-
tems and implement quality assessment pro-
grams to ensure the provision of high-quality
care. Among the various instruments utilized
for quality assessment, the trauma registry was
identified as the most crucial [9]. For several
decades, trauma registries have played a piv-
otal role in the trauma systems of high-income
countries, with substantial evidence support-
ing their numerous benefits. These registries
have significantly enhanced the methods of
record-keeping and are commonly utilized to
demonstrate the advantages associated with
trauma systems [10].

Machine Learning (ML) plays a crucial role
in the healthcare industry, enabling the discov-
ery of new knowledge and the identification
of patterns to inform decision-making. This
cutting-edge field aims to extract valuable
and essential information from vast datasets.
Analytical methods are necessary to identify
crucial information for decision-making in
healthcare data. The application of ML of-
fers several benefits, including disease detec-
tion, management, and prevention, as well as
cost reduction in medical care. It also assists
in formulating efficient healthcare policies,
developing patient recommendation systems,
and creating health profiles. The healthcare
industry generates significant amounts of
data, so maintaining accurate patient diagno-
sis and treatment requires effective database
management [11].

The complexity and volume of healthcare
data make it challenging to extract meaningful
insights about patients’ health status. This data
encompasses various aspects such as therapy
costs, hospitals, medical claims, patients, phy-
sicians, and medical history. ML techniques
are crucial for analyzing and drawing con-
clusions from such complex data to improve
patient care and management. ML can aid in
the classification of patients’ disorders, as-
sist in treatment and management, predict
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hospital admission duration, and maintain
accurate management information systems.
Current technologies and ML approaches are
helping reduce costs and identify factors con-
tributing to diseases [12]. ML techniques have
found extensive applications in the healthcare
field, including predicting the development of
type 2 diabetes [13], diagnosing breast cancer
[14], indicating chronic diseases [15], solving
multi-object fusion detection problems in e-
healthcare [16], analyzing COVID-19 through
clustering algorithms [17], evaluating health-
care facility performance [18], and enhanc-
ing mutual privacy in healthcare [oT systems
through clustering strategies [19].

ML has also been extensively utilized in
the field of trauma and injury. For example,
Bruschetta et al. conducted a study comparing
different ML algorithms and a classical linear
regression model to evaluate traumatic brain
injury patients at different time points [20].

Kuo et al. aimed to develop and validate ML
models for predicting the mortality of hospital-
ized motorcycle riders using Logistic Regres-
sion (LR), Support Vector Machine (SVM),
and Decision Tree (DT) analyses [21]. Feng et
al. compared the predictive abilities of twen-
ty-two ML models with a LR model, using
performance measures such as Receiver Op-
erating Characteristic (ROC), Area Under the
Curve (AUC), accuracy, F-score, precision, re-
call, and decision curve analysis [22]. Anoth-
er research focused on evaluating diagnostic
accuracy for traumatic brain injury in elderly
patients using various ML algorithms [23].
Rau et al. predicted patient deaths using
LR, SVM, DT, Naive Bayes (NB), and artifi-
cial neural network models [24].

ML has diverse applications in trauma regis-
try systems, encompassing patient classifica-
tion, predictive modeling, data analysis, and
system integration. For instance, ML models
have demonstrated high prognostic perfor-
mance and medical validity in predicting re-
covery post-trauma [25]. These models have
also been utilized to anticipate blood product

transfusion needs in pediatric patients under-
going craniofacial surgery [26]. Furthermore,
ML has been applied to identify geospatial
and structural factors influencing youth vio-
lence [27] and predict the risk of prolonged
mechanical ventilation for patients with trau-
matic brain injury [28]. Finally, ML has been
applied to surgical imaging for diagnosing and
treating spine disorders [29].

Research indicates that supervised algo-
rithms are increasingly being used in trauma
treatment; despite these studies, no conclusive
evidence has been found.

The algorithms that showed acceptable per-
formance were LR, SVM, and Random Forest
(RF). This study focused on supervised meth-
ods to diagnose the discharge status of trauma
patients because Kashan Trauma Registry data
are local, and ML has not been applied to them.

The current study will address these ques-
tions at the conclusion of this study:

Among the different algorithms used to clas-
sify trauma patients, which one performed
better at predicting their discharge status?
How does data balancing affect algorithm per-
formance? Which of the following indicators
of accuracy, precision, recall, and F-measure
is most influenced by data balancing?

Material and Methods

It is a retrospective study of patients who
have received trauma treatment at the Kashan
Trauma Center. A specific time frame of
patient treatment at the Kashan Trauma Cen-
ter is scrutinized in this study. In order to im-
prove trauma care, supervised algorithms are
employed to analyze the discharging status
of trauma patients, distinguishing between
those who have improved and those who
haven’t.

Dataset

Data from the Kashan Trauma Registry was
collected between March 2018 and February
2019. We removed noisy data and outliers
after data collection. We excluded missing

J Biomed Phys Eng 2026; 16(1)



Zahra Kohzadi, et al

data, split the data, and then balanced these
classes based on Synthetic Minority Over-
sampling Technique (SMOTE) (Figure 1).
A total of 3,930 records were obtained after
preprocessing the data. We categorized fea-
tures numerically and categorically (Table
1). The class label was based on the patient’s
discharge status, which was either improved
(2,642) or non-improved (1,288).

Algorithm selection
During the learning step, a classification

model is built, followed by the classification
step, a two-part procedure for classifying data
(using the model to predict class labels). In
the first stage, a classifier is built to describe
a preset set of data classes or concepts. Dur-
ing the training phase of the learning stage, a
classification algorithm creates the classifier
by “learning from” a training set of database
tuples and their associated class labels. Since
each training tuple has a class label, this pro-
cess is also known as supervised learning; As a
result, the classifier’s learning is “supervised”

,'/

\ AN D \ N N

Data Collection > Data Cleaning ) Transfomation / Spliting Dataset / Balancing >
v,
y

Implemeted

algorithms Evaluation

y

* Acquire pertinent + Identify and handle
clinical information missing values. For
from Kashan Trauma  missing categorical
Registry data, the mode was

variables into
numerical

e N=4115 used, whereas the methods the one-hot
I Class1=1348. mean was used for encoding,
C]assZ=2?l6?) ’ missing numerical Normalization of

data. Also, Outlier
and noise data were
removed,
*N=3930
+(Class1=1288,
Class2=2642)

numerical data using
the Min-Max method.

«Convert categorical  «Hold Out:
Train(70%),

representations using ¥:ii??;i‘;g( 15%),

*SVM (Linear- radial- « Confusion Matrix

«SMOTE(K=5), polynomial) (Accuracy,
Sampling= 0.5, 0.75, +Naive Bayes Precision, Recall,
1.0 » Logistic Regression F-Measure)

* Random Forest
(Information-gain-
Gini-index)

+ KNN (Manhattan,
Euclidean, Jaccard,
Chebyshev and
Cosine distances)

Figure 1: Implementation Framework (SMOTE: Synthetic Minority Over-sampling Technique,
SVM: Support Vector Machine, KNN: K-Nearest Neighbors)

Table 1: Trauma dataset features after
preprocessing

-Age

- Total expenditures

- The number of days admitted

- Place birth

- Type of insurance

- Sex

- Occupation

- Education

- Type of conveyance carrying to
emergency

- ICD-injuries

- ICD-external causes

- State of discharge

Numerical
variables

Categorical
variables

ICD: International Classification of Diseases

since it knows to which class each training tu-
ple belongs [30, 31]. The following are some
descriptions of supervised algorithms used in
this article.

1. SVM

SVM is a supervised ML model that can be
utilized for both regression and classification
tasks. A key advantage of SVMs is their use
of kernels, mathematical functions that proj-
ect input data into higher-dimensional feature
spaces to facilitate separation between classes
[32-34]. This projection into hyperspace en-
ables SVM to construct optimal separating
hyperplanes between data points of different
class labels, improving generalizability and
classification accuracy. By effectively sepa-
rating complex and nonlinear data, SVMs can
generate robust predictive models.

J Biomed Phys Eng 2026; 16(1)
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2. KNN

The K-Nearest Neighbors (KNN) algorithm
is a nonparametric, supervised ML technique
used for both classification and regression
predictive modeling. Unlike parametric al-
gorithms, KNN does not make assumptions
about the underlying statistical distribution
of the data. A key hyperparameter, k, must be
predefined to specify the number of neighbors
examined during prediction. To determine
neighbors, KNN utilizes distance metrics to
quantify the similarity between data points,
with common choices being Euclidean dis-
tance, Manhattan distance, cosine similar-
ity, and Jaccard distance [33, 35]. A key ad-
vantage of KNN is that it adapts to the local
structure of the data, classifying new points
based on their proximity to points in the
training set.

3. Naive Bayes

The NB classifier is a probabilistic ML algo-
rithm for categorical data predicated on Bayes’
theorem. It relies on the simplifying assump-
tion that predictor variables are conditionally
independent given the class label - the “naive”
conditional independence assumption. Despite
this oversimplification, NB has demonstrated
high predictive performance, especially when
dealing with high-dimensional feature spaces
[34, 36]. As it requires relatively few train-
ing data to estimate parameters, NB is an ef-
ficient and effective supervised learning tech-
nique for multivariate classification tasks. The
algorithm calculates posterior probabilities
for each class and assigns new data points to
the most probable class. Though naive, this
Bayesian approach has proven surprisingly
robust and applicable across multiple domains.

4. Logistic Regression

LR is a statistical technique for modeling
the relationship between a categorical depen-
dent variable and one or more independent
predictor variables, which may be continuous
or categorical [37, 38]. It estimates the prob-
ability of particular outcomes, most often bi-
nary, based on logistic functions of the linear

predictor. LR facilitates explanatory model-
ing and prediction of categorical response
variables.

5. Random Forest

RF is an ensemble ML algorithm that can be
utilized for both regression and classification
tasks. It operates by constructing a multitude
of DT during training and aggregating their
individual predictions, thereby improving
predictive performance and reducing overfit-
ting compared to single DT models [34, 39,
40]. To determine the optimal feature split at
each node when building individual trees, RF
employs metrics such as information gain,
Gini impurity, and gain ratio. By training each
tree on a random subset of features and data
points, the resulting forest model incorporates
diversity while capitalizing on averaging to
enhance generalization capability. The algo-
rithm’s combination of bagging and random
feature selection yields robust and accurate
predictions.

6. SMOTE

SMOTE is a data preprocessing approach
that handles class imbalance in ML datasets
where one class is underrepresented compared
to others [41, 42]. Algorithms can struggle to
adequately learn patterns and properties of the
minority class due to insufficient instances. To
mitigate this, SMOTE synthetically generates
new minority class examples by interpolating
between existing minority data points in fea-
ture space [42, 43]. Augmenting the minority
class via oversampling improves class bal-
ance and enhances model performance on the
rare class. By compensating for skewed class
distributions, SMOTE facilitates more robust
learning from imbalanced data.

Implemented framework

Various supervised ML models were imple-
mented for binary patient diagnosis, includ-
ing SVM with linear, Radial Basis Function
(RBF), and polynomial kernels; KNN algo-
rithm with Manhattan, Euclidean, Jaccard,
Chebyshev, and cosine distance metrics and

J Biomed Phys Eng 2026; 16(1)
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varying k values; NB; LR; and RF with in-
formation gain, gain ratio, and Gini impurity
criteria. Algorithms were implemented using
Python and Jupyter Notebook.

The dataset was partitioned into 70% train-
ing, 15% testing, and 15% validation sets
using the hold-out method to enable robust
model development, rigorous evaluation,
and reliable performance validation. To ad-
dress the class imbalance in the training data,
the SMOTE was applied at sampling rates of
0.5, 0.75, and 1.0 to synthetically generate
additional minority class instances.

Evaluation

A confusion matrix is a summarizing the
performance of a classification ML model by
tabulating its True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Neg-
ative (FN) predictions [44, 45]. The confusion
matrix facilitates the evaluation of key classi-
fication metrics including accuracy, precision,
recall, and F1-score.

The four confusion matrix categories are
[44, 45]:

TP: Correctly predicted non-improved
instances

TN: Correctly predicted improved instances

FP: Incorrectly predicted as non-improved
when improved

FN: Incorrectly predicted as improved when
non-improved

By condensing results into a confusion
matrix, model performance on binary classifi-
cation tasks can be visualized and quantified.

(TP+ TN)
Accuracy = (1)
(TP+ TN+ FP+ FN)
Precision = L 2
(TP + FP) @)
TP
Recall = ———
(TP + FN) )
(2 x Precisionx Recall)
F—measure = 4)

(Precision + Recall)
A confusion matrix with high accuracy

indicates the model correctly classified a sub-
stantial proportion of samples [34, 44, 45].
However, accuracy alone can be misleading,
especially with imbalanced datasets where
one class predominates. While high accuracy
is desirable in a confusion matrix, additional
metrics should be examined for comprehen-
sive model evaluation. High recall signifies
the model correctly identified most actual
positives, while high precision indicates few
false positives were produced. A high FI
score demonstrates proficiency in both preci-
sion and recall, balanced by the F1 measure.
Consequently, accuracy, precision, recall,
and F1 score were calculated to evaluate the
performance of the implemented algorithms.
Though accuracy provides an overall measure
of correct predictions, precision, and recall
offer deeper insight into positive and nega-
tive classification capabilities on imbalanced
data. The F1 score synthesizes precision and
recall into a singular metric, facilitating model
selection and performance benchmarking.
Therefore, we calculated the algorithms’
accuracy, precision, recall, and F-measure.

Results

Table 2 presents the dataset partition sizes
for training, validation, and testing based on
the 70/15/15 hold-out split. This allocated
2,751 records for training, 589 for validation,
and 590 for testing. After SMOTE oversam-
pling of the training set at rates of 50%, 75%,
and 100%, the validation and testing parti-
tions remained unchanged while the train-
ing set increased in size as shown in Table 2.
Oversampling enabled compensation for class
imbalance in the training data only, while pre-
serving untouched validation and test sets for
unbiased model evaluation.

The results of executing the algorithms on
the test and validation data using SMOTE are
shown in Tables 3 and 4. Among the KNN
models, K=10 yielded the best performance.

The validation data (Table 3) showed SVM
achieved a maximum accuracy of 81.5% with

J Biomed Phys Eng 2026; 16(1)
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the linear kernel and SMOTE 100%. The lin-
ear kernel with SMOTE 75% also yielded the
highest precision of 81.5%. Additionally, the
linear kernel coupled with SMOTE 100% pro-
duced the top recall of 64.8% and the F1 score
of 68.4%.

For KNN, Euclidean and Manhattan distanc-
es attained a peak accuracy of 80% without
SMOTE. Manhattan distance without SMOTE
also achieved the highest precision of 79.1%.
SMOTE 100% enabled the maximum recall
of 78% based on the Jaccard index. An F1
value of 63.6% was obtained using Manhattan
distance and SMOTE 75%.

With NB, the best accuracy of 65.9% and
precision of 46.2% resulted from no SMOTE
and SMOTE 50%. SMOTE 100% generated
the highest recall of 78% and F1 score of
62.1%.

LR achieved its maximum accuracy of 81%
using SMOTE 50%. The same configuration
yielded the top precision of 79.3%. SMOTE
100% produced the highest recall of 76.4%
and F1 of 67.4%

RF attained its best accuracy of 86.2% and
precision of 82.2% with the Gini index and
SMOTE 50%. Top recall of 76.4% was seen
with SMOTE 100% and 75% for Gini and In-
formation indexes. The maximum F1 of 77%
occurred using the Information index and
SMOTE 75%.

The test data results (Table 4) showed SVM
achieved its highest accuracy of 80.8%, recall

of 67.2%, and F1 of 70.2% using the linear
kernel and SMOTE 100%. The linear kernel
with SMOTE 50% yielded the maximum pre-
cision of 85.8%.

In KNN, cosine distance with SMOTE 50%
produced the top accuracy of 79.2%. The high-
est precision was 74.5% without SMOTE for
Euclidean distance and with SMOTE 50% for
Manhattan distance. SMOTE 100% enabled
the maximum recall of 77.3% per the Jacca-
rd index. Cosine distance with SMOTE 50%
achieved the highest F1 of 65.2%.

With NB, no SMOTE yielded the best accu-
racy of 64.7% and precision 0f 48.2%. SMOTE
100% generated a peak recall of 75.8% and F1
of 57.3%.

For LR, SMOTE 75% achieved the maxi-
mum accuracy of 78.8%. SMOTE 50% yield-
ed the highest precision of 73%. Top recall of
71.7% and F1 of 68.1% resulted from SMOTE
100%.

In RF, an equal high accuracy of 84.6%
occurred with and without SMOTE 50% us-
ing the information gain index. The Gini
index attained its best precision of 79.7% with
SMOTE 50%. Additionally, SMOTE 100%
enabled the maximum recall of 78.3% and F1
of 76.4% for the Gini index.

Discussion

Trauma and injury registration encom-
passes the collection of prehospital data and
demographic information pertaining to the

Table 2: Partitioning of data before and after balancing

The number of class The number of

Balancing Split dataset
1 records class 2 records

Train 908 1843

Before Balancing Validation 182 407
Test 198 392

Train_resampled (100%) 1843 1843

After Balancing Train_resampled (75%) 1382 1843
Train_resampled (50%) 921 1843

J Biomed Phys Eng 2026; 16(1)
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Table 3: Performance of algorithms based on the Confusion matrix criteria for different balances (Validation dataset)

SVM KNN RF
Criteria mm_ﬂ._\aow_:m Linear Polynomial RBF Euclidean Manhattan Chebyshev Cosine Jaccard n\omv A_ﬂ\” Gini Information-
(%) (%) (%) (%) (%) (%) (%) (%) (%) Gain (%)
SMOTE (100) 81/5 72/5 70/3 73/9 7415 72/0 7218 70/6 64/2 78/6 84/4 85/6
Accuracy SMOTE (75) 83/0 72/0 71/5 76/9 7714 7213 7519 73/2 64/7 78/8 85/6 85/9
SMOTE (50) 80/0 73/3 73/5 79/6 79/6 7212 7816 7412 65/9 81/0 86/2 85/6
SOMTE (0) 79/3 73/3 73/3 80/0 80/0 7212 78/8 72/5 65/9 80/6 85/6 85/9
SMOTE (100) 72/4 55/4 5117 55/9 5710 59/6 5417 51/6 45/3 63/7 73/9 77N
. SMOTE (75) 81/5 5511 54/4 62/1 63/4 63/0 60/3 5517 45/4  65/7 78/0 7717
Preciion SMOTE (50) 81/4 59/8 60/8 76/7 7717 70/5 72/6 59/3 46/2 792 822 81/7
SOMTE (0) 80/6 59/8 60/7 78/1 791 70/5 73/2 5715 46/2 79/3 79/8 81/9
SMOTE (100) 64/8 56/6 5717 731 71/4 291 70/3 78/0 76/4 T71/4  T6/4 75/8
SMOTE (75) 58/2 50/5 47/3 64/8 63/7 25/3 64/3 64/8 70/9 65/4 74/2 76/4
Recal SMOTE (50) 45/6 41/8 40/1 48/9 47/8 17/0 49/5 5217 63/7 52/2 70/9 68/7
SOMTE (0) 43/4 41/8 39/0 48/9 47/8 1710 49/5 42/3 63/7 505 T1/4 69/8
SMOTE (100) 68/4 56/0 54/5 63/3 63/4 39/1 61/5 62/1 56/9 67/4 75/ 76/5
E Measure SMOTE (75) 67/9 5217 50/6 63/4 63/6 36/1 62/2 59/9 55/4  65/6 76/1 770
SMOTE (50) 58/5 4912 48/3 59/7 59/2 27/4 58/8 55/8 53/6 62/9 76/1 7416
SOMTE (0) 56/4 49/2 47/5 60/1 59/6 27/4 59/0 48/7 53/6 61/7 75/4 7514

SVM: Support Vector Machine, KNN: K-Nearest Neighbors, NB: Naive Bayes, LR: Logistic Regression, RF: Random Forest, SMOTE: Synthetic Minority Over-sampling Technique,

RBF: Radial Basis Function

J Biomed Phys Eng 2026; 16(1)

\

=]
<t



Supervised Learning for Trauma Patients

Table 4: Performance of algorithms based on the Confusion matrix criteria for different balances (Test dataset)

SVM KNN RF
Criteria Wm_w.mwm:m Linear Polynomial RBF Euclidean Manhattan Chebyshev Cosine Jaccard Aza\ewv A_“\” Gini Information-
(%) (%) (%) (%) (%) (%) (%) (%) (%)  Gain (%)
SMOTE (100) 80/8 7212 719 73/2 73/6 7 72/5 70/2 62/0 77/5 83/7 82/4
Accuracy SMOTE (75) 80/0 7212 7115 7519 7613 7215 75/9 7017 62/9 78/8 83/9 83/4
SMOTE (50) 80/2 71/5 7212 78/3 78/5 71/5 79/2 73/6 64/4 T77/5 84/2 84/6
SOMTE (0) 79/8 7210 7210 7815 7816 71/5 78/8 72/4 6417 T7/3 84/2 84/6
SMOTE (100) 73/5 5715 5713 58/5 58/8 66/7 5716 53/9 46/0 64/8 T74/5 72/4
N SMOTE (75) 770 58/7 58/1 64/0 64/5 731 63/9 55/4 46/6 68/9 T77/0 75/5
Precison SMOTE (50) 85/8 60/0 62/3 7410 7415 7412 7412 60/5 4719 73/0 7917 78/9
SOMTE (0) 85/6 61/1 62/0 7415 7510 7412 73/9 60/9 48/2 7219 797 79/6
SMOTE (100) 67/2 66/2 63/6 69/7 70/7 3173 68/7 7713 7518 T71/7 T78/3 76/8
SMOTE (75) 5716 581 54/5 64/6 65/2 28/8 65/2 65/2 7217 67/2 T74/2 7417
Recal SMOTE (50) 49/0 45/5 43/4 54/5 54/5 23/2 58/1 61/1 67/7 52/0 71/2 73/7
SOMTE (0) 48/0 46/0 42/9 54/5 54/5 23/2 5711 49/5 67/7 51/5 T71/2 727
SMOTE (100) 70/2 61/5 60/3 63/6 64/2 42/6 62/7 63/5 57/3 68/1 76/4 7415
E-Measure SMOTE (75) 65/9 58/4 56/3 64/3 64/8 41/3 64/5 59/9 56/8 68/0 75/6 7511
SMOTE (50) 62/4 5117 51/2 62/8 63/0 35/4 65/2 60/8 56/1 60/8 75/2 76/2
SOMTE (0) 61/5 52/4 50/7 63/0 63/2 35/4 64/4 54/6 56/3 60/4 75/2 76/0

SVM: Support Vector Machine, KNN: K-Nearest Neighbors, NB: Naive Bayes, LR: Logistic Regression, RF: Random Forest, SMOTE: Synthetic Minority Over-sampling Technique,
RBF: Radial Basis Function
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occurrence of the injury. The WHO has rec-
ommended the utilization of this data for the
purpose of effectively managing these patients
and enhancing the standard of care provided to
them [9]. The quantity of data in our progres-
sively digitalized world is experiencing expo-
nential growth, and big data analytics repre-
sents both a burgeoning trend and a prominent
area of study. The algorithms employed in ML
grant access to analyses, enabling the detection
and prediction of disease existence, as well as
aiding medical professionals in decision-mak-
ing by facilitating early disease identification
and appropriate therapy selection.

Based on the outcome of the present study,
the optimal outcomes were observed with
SVM, RF (depth=10), and KNN algorithms in
which linear kernels were used, along with the
Gini index and Information Gain, as well as
the Euclidean and Manhattan distances with k
set to 10.

In the majority of algorithms, SMOTE
with a 50% oversampling rate yielded higher
accuracy compared to SMOTE with a 75%
oversampling rate and SMOTAE with a
100% oversampling rate. The precision met-
ric showed suboptimal performance with
SMOTAE (75%) and SMOTE (100%) in
most algorithms. Furthermore, recall, and F-
score exhibited an upward trend across most
algorithms as the number of balanced records
increased.

Nevertheless, it cannot be definitively con-
cluded that SMOTE had a uniformly positive
or negative impact on all indicators simulta-
neously. In certain algorithms, the application
of SMOTE appeared to be necessary, while in
others, better results were achieved without
utilizing SMOTE.

A notable finding in our study was that
NB was the algorithm with the weakest per-
formance, whereas RF was the algorithm with
the best performance.

In the study conducted by Bruschetta et al.
[20] the performance of SVM, KNN, NB, DT
algorithms, and an ensemble ML approach

was compared individually. The results in-
dicated that the NB algorithm exhibited the
poorest performance when a two-class out-
come (positive or negative) was employed.
Similarly, in the current study, NB was also
among the algorithms that demonstrated
relatively inferior performance.

The ML techniques can be utilized to pre-
dict the mortality of motorcycle riders with
a reasonable level of accuracy [21]. By in-
tegrating a ML model, particularly the
SVM algorithm, into the trauma system, it
may be possible to identify high-risk pa-
tients and guide clinical staff towards the
most suitable interventions. In the current
study, the SVM algorithm with the linear
kernel exhibited satisfactory performance.

In the study conducted by Feng et al. it was
found that the twenty-two ML models selected
for outcome prediction in patients with Severe
Traumatic Brain Injury (STBI) exhibited capa-
bilities comparable to the traditional LR model.
Notably, the cubic SVM, quadratic SVM, and
linear SVM models outperformed LR in terms
of performance [22]. In the present study, SVM
with a linear kernel was identified as the SVM
algorithm with the highest performance. How-
ever, the RF algorithm (using the Gini-Index)
demonstrated the best overall performance
among all the algorithms tested, although the
results obtained with LR were also deemed
acceptable.

According to the findings of Abujaber
et al. [46], the performance of the SVM
algorithm surpassed that of traditional clas-
sical models employing conventional multi-
variate analytical approaches when predicting
mortality in patients with Traumatic Brain
Injury (TBI). In the current study, although
the SVM (linear) algorithm exhibited rela-
tively good performance, it was not the top-
performing algorithm.

Similar to the present study, the RF al-
gorithm showed the best performance, and
LR yielded acceptable results. In a study
by Wang et al. [23], it was reported that
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prognostication tools utilizing Adaboost, RF,
and LR algorithms proved beneficial for phy-
sicians in assessing the risk of poor outcomes
in geriatric patients with TBI and in guid-
ing the selection of personalized therapeutic
options.

According to the findings of Matsuo et al.
[47], both the RF and Ridge Regression algo-
rithms demonstrated the highest performance
in predicting poor in-hospital outcomes and
mortality in cases of TBI. Their research in-
dicates that modern ML techniques can effec-
tively predict the occurrence of TBI. Similar-
ly, in the current study, the RF algorithm was
identified as the best-performing algorithm
among the ones tested.

According to the conclusions drawn from
this study, equalizing class features can ef-
fectively improve the performance of ML
algorithms. However, it is important to note
that the choice of algorithm, its parameters,
and the quantity of added samples can di-
rectly impact the algorithm’s performance.
Therefore, relying solely on accuracy values
in scenarios with imbalanced data may not
be feasible. The findings of this research sug-
gest the potential use of supervised algorithms
for predicting the discharge status of trauma
patients.

Despite the advantages of this study, there
are some limitations to consider. First, the
data used in the study is retrospective, and it
was not possible to access the paper records
to verify the quality of the electronic data.
Additionally, in future research, alternative
classification methods with different param-
eters, ensemble learning techniques, and
clustering approaches could be explored to im-
provethediagnosisofdischargestatusfortrauma
patients.

Conclusion

The registration of health data in health
systems can benefit from the application of
ML techniques, which can help health stake-
holders uncover hidden knowledge in the

data and support them in decision-making
and health prediction. While supervised al-
gorithms are valuable in diagnosing the dis-
charge status of trauma patients, the impact
of data balancing on accuracy measures such
as Precision, Recall, and F-measure varies
across different algorithms. These measures
do not consistently show a trend of increase
or decrease. Therefore, optimizing the per-
formance of algorithms requires appropriate
parameter settings. Balancing imbalanced
data may improve algorithmic performance,
but it is important to note that the effective-
ness of this approach depends on the specific
algorithm and the parameter values assigned
to it. In summary, the success of data balanc-
ing in enhancing algorithmic performance
hinges on carefully considering algorithm
characteristics and configuring parameters
accordingly.
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