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Introduction

Dosiomics features are employed to advance the prediction of 
treatment outcomes and complications in radiation therapy. Do-
siomics involves the conversion of the calculated 3D dose distri-

bution matrix from treatment plans into quantitative data, which is sub-
sequently analyzed for modeling Tumor Control Probability (TCP) and 
Normal Tissue Complication Probability (NTCP) [1-8]. Dosiomics fea-
tures specify the statistical and spatial relationships of voxels in the dose 
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ABSTRACT
Background: Dosiomics involves converting 3D dose distribution matrices into 
quantifiable data for analysis. Evaluating the stability of dosiomics features against dif-
ferent prescribed doses is essential before utilizing them for treatment plan assessment. 
Objective: The current study aimed to investigate dosiomics features variability 
resulting from different prescribed doses in 3D conformal radiotherapy treatment plans 
of prostate cancer patients.
Material and Methods: This retrospective cross-sectional study is conducted 
based on data from ten prostate cancer patients, and their dose matrices were ana-
lyzed to extract features. The stability of dosiomics features was evaluated using the  
Coefficient of Variation (CV). 
Results: For each patient, 372 features were extracted for each of the five selected 
regions of interest. Features with a CV>0.25 have been considered with higher vari-
ability. Among the Gray Level Size Zone Matrix group, the Planning Target Volume 
(PTV) exhibited the highest CV value. Overall, 71% of the features had a CV<0.1, 
while 5.9% of those had a CV>0.25. Less than 2% of the features had a CV>0.5, and 
only less than 1% had a CV>1. Features with a CV>0.25 were as follows: 33 features 
in PTV, 60 features in PTV-All, 63 features in PTV-Lymph Node, 65 features in the 
rectum, and 54 features in the bladder.  
Conclusion: The prescribed dose significantly influences the variability of do-
siomics features during extraction. Understanding these changes is essential for the 
optimal application of dosiomics in treatment planning for cancer.
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matrix and also extract several spatial features 
through quantitative analysis based on multi-
dimensional data, such as shape, statistics, and 
texture features [1,3,7,9]. Dosiomics, incor-
porating spatial dose distribution information, 
can outperform models based on clinical char-
acteristics and dosimetric factors from Dose 
Volume Histograms (DVH). By considering 
spatial information, dosiomics captures details 
and correlations within the treatment area, 
enhancing the accuracy of NTCP and TCP 
models. Thus, dosiomics offers a promising 
approach for improving treatment outcome 
predictions compared to DVH-based models. 
This highlights the potential of dosiomics as 
a valuable approach for enhancing treatment 
outcome predictions compared to DVH-based 
models. Dosiomics can enhance the prediction 
of radiation-induced complications in models 
and the potential for tumor control after radia-
tion therapy [1-4,6-13]. The use of dosiomics 
features for constructing predictive models in 
machine learning methods requires major data 
collected from different centers. However, 
a key concern arises regarding the potential 
impact of variations in prescribed doses for 
patients, the utilization of different technolo-
gies, and the diverse methods to calculate dose 
distribution across various centers. Further, 
these variations can undermine the efficiency 
of the dosiomics features extraction. On the 
other hand, some dosiomics features are sensi-
tive to factors related to the dose distribution 
calculation process in treatment plans, such as 
calculation grid size [14-16], type and version 
of calculation algorithms [15], and cube pixel 
spacing size [16]. The stable and reproducible 
features have to be identified before analyzing 
dosiomics data since features with low stabil-
ity can yield false findings and non-reproduc-
ible models.

While some previous studies have examined 
the stability of extracting dosiomics features 
against some influencing factors related to the 
dose distribution calculation process, the sta-
bility of dosiomics feature extraction has not 

been investigated against different prescrip-
tion doses. Therefore, this study aimed to eval-
uate the stability of dosiomics features using  
different prescribed dose values: 67, 69, 71, 
and 73 Gy in prostate cancer patients.

Material and Methods

Data Collecting and Prescribed 
Dose

In this retrospective cross-sectional study, 
the treatment planning data were collected 
from ten prostate cancer patients with pelvic 
lymph node involvement (or patients requir-
ing pelvic prophylactic treatment). Computed 
tomography-simulation images with a slice 
thickness of 5 mm were taken with patients 
in the supine position using a SOMATOM  
Definition AS or SOMATOM Confidence CT 
scanner (Siemens, Germany). The axial plane 
of the CT images had a matrix of 512×512 with 
a pixel size ranging from 0.77 to 0.98 mm. The 
treatment plans for these patients were carried 
out using the TIGRT Treatment Planning Sys-
tem (TPS) for the Siemens-Primus and energy 
of the 15-megavoltage linear accelerator at 
Harandi Charity Foundation (Isfahan, Iran). 
In the present study, the prescribed dose for 
the three-dimensional Conformal Radiation 
Therapy (3D-CRT) treatment plans for pros-
tate patients was as follows: in the first stage, 
treatment of the whole pelvis (PTV-All: PTV-
Lymph Node (PTV-LN) + Planning Target 
Volume (PTV)) up to a dose of 45 Gy in 25 
fractions. Then, in the second stage, boost 
treatment was applied for different prescrip-
tion doses of 22, 24, 26, and 28 Gy (total 
doses of 67-73 Gy in 36-39 fractions) to the 
PTV. In stages of whole pelvis treatment and 
boost treatment, 3D-CRT plans were designed 
as four-field boxes with a 1 cm Multi-Leaf  
Collimator (MLC) margin. The treatment plans 
were optimized to ensure that at least 95% of 
the prescribed dose was delivered to more 
than 95% of the PTV-LN and PTV volume. 
Also, the maximum dose of the plan should 
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be less than 107% of the total prescribed dose. 
Then, for each patient, four different dose 
distributions (each patient with four different  
prescribed doses) were extracted as DICOM 
files (RT Dose & RT Structure).

Dosiomics Features Extraction
A total of eighteen First-Order dosiomics 

features of the dose matrix and 75 texture 
features, including GLCM (24 features), GL-
RLM (16 features), GLDM (14 features), GL-
SZM (16 features), and NGTDM (5 features) 
[15], were extracted from Regions of Interests 
(ROIs) in PTV, PTV-LN, PTV-All, bladder, 
and rectum using the SlicerRadomics module 
in 3D-Slicer software (version 5.3.0). To ex-
tract features after treatment planning, CT im-
ages along with RT structure and the 3D dose 
matrix (RT dose) corresponding to four dose 
distributions with prescribed doses of 67, 69, 
71, and 73 Gy for each patient in DICOM for-
mat were exported from the TPS and imported 
into the 3D-Slicer software. All dose distribu-
tions were resampled to a voxel size of 1×1×1 
mm3 before extracting the dosiomics features. 
Subsequently, the resampled dose distribution 
was approximated between the minimum and 
maximum dose with a fixed bin width of 1.

Data Analysis
The stability of feature extraction was evalu-

ated based on the Coefficient of Variation (CV), 
defined as the ratio of the standard deviation 
to the mean value [15,16]. The CV for each 
feature was calculated based on four different 
dose distributions for each patient and the five 
ROIs. A threshold of CV>0.25 was employed 
to identify features with a higher degree of 
variability. The specific threshold value was se-
lected based on the stability curve, which plots 
the normalized number of features against the 
coefficient of variation, for all features and 
ROIs. The threshold points for CV>0.25 were 
determined based on the location, in which the 
stability curve exhibited a noticeable break 
or bend [14]. A difference was statistically  

significant (P-value<0.05). The data was 
analyzed using IBM SPSS version 27 and R  
version 4.3.1.

Results
A total of 372 features were extracted for 

each of the five selected ROIs (PTV, PTV-LN, 
PTV-All, rectum, bladder). In Figure 1, the 
CV values’ results are summarized in terms of 
stability curves, where the normalized number 
of features is plotted against the CV values 
for all patients, ROIs, and considering all six 
groups of dosiomics features simultaneously 
(First-Order, GLCM, GLDM, GLRLM, GL-
SZM, NGTDM). Several features with cer-
tain values are not utilized in the curve rep-
resentation for better visibility regarding CV 
changes. The analysis revealed that approxi-
mately 71% of the features had a CV less than 
0.1. Additionally, around 5.9% of the features 
had a CV exceeding 0.25, while less than 
2% of the features had a CV greater than 0.5  
(Figure 1). Furthermore, less than 1% of the 
features exhibited a CV surpassing 1. The 
number of features with CV>0.25 included: 
33 features in PTV, 60 features in PTV-All, 63 
features in PTV-LN, 65 features in rectum, and 
finally, 54 features were found in the bladder.

Stability curves are separately displayed 

Figure 1: The coefficient of variation values 
for all the patients and region of interests, 
considering simultaneously all the four do-
siomics features families
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for each of the six different groups of fea-
tures for all patients in Figure 2. Additionally,  
Table 1 presents these results in terms of mean 
and maximum CV values for the six feature 
families and all ROIs. According to Table 1, 

PTV had the highest CV value in the GLSZM 
group, then bladder in First-Order, GLCM, 
GLDM, and GLRLM groups, and PTV LN in 
the NGTDM features group.

The most common dosiomics features with 

Figure 2: The coefficient of variation values for all patients and region of interests, considering 
separately different six dosiomics features families. (GLCM: Gray Level Co-occurrence Matrix, 
GLDM: Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray 
Level Size Zone Matrix, NGTDM: Neighboring Gray Tone Difference Matrix)
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CV>0.25 are as follows:
For PTV: GLSZM-SALGLE (10 occurrenc-

es), GLSZM-SAHGLE (9 occurrences), and 
GLSZM-SAE (8 occurrences). The maximum 
CV value of 1.99 was obtained for patient 7 
and the SZM-SAHGLE feature.

For PTV-All: GLCM-Cluster Prominence 
and GLCM-Cluster Shade (10 occurrences), 
GLSZM-SALGLE (7 occurrences), GLSZM-
SAHGLE (6 occurrences), GLSZM-LGLZE, 
and GLSZM-LALGLE (5 occurrences). The 
maximum CV value of 0.72 was obtained for 
patient 6 and the SZM-SALGLE feature.

For PTV-LN: GLCM-Cluster Prominence 
and GLCM-Cluster Shade (10 occurrences), 
GLSZM-SALGLE (8 occurrences), GLSZM-
SAHGLE, and GLDM-SDHGLE (7 occur-
rences), GLSZM-LALGLE (5 occurrences). 
The maximum CV value of 0.73 was obtained 
for patient 6 and the SZM-SALGLE feature.

For rectum: GLSZM-SALGLE (10 occur-
rences), GLSZM-SAHGLE, and GLRLM-
LGLRE (5 occurrences). The maximum CV 
value of 1.83 was obtained for patient 2 and 
the SZM-SALGLE feature.

For bladder: GLSZM-SALGLE (9 occur-
rences), GLSZM-SAHGLE, GLCM-Cluster 
Prominence, and GLCM-Cluster Shade (7 
occurrences), GLSZM-SAE (6 occurrences). 
The maximum CV value of 1.9 was obtained 
for patient 4 and the SZM-SALGLE feature.

Figure 3 displays the stability curves of 
different groups of dosiomics features for 
various ROIs. However, Figure 1 shows that 
each patient was separately examined, and  
Figure 3 presents the average values of CV 
related to each feature and ROI across all 
patients. Accordingly, the highest CV value 
was observed for PTV in the GLRLM group 
(CV<0.17), for PTV-LN in the GLCM group 
(CV>0.3), for PTV-All in the GLSZM group 
(CV>0.25), for rectum in the GLSZM group 
(CV<0.3), and bladder in the GLCM group 
(CV<0.3).

Discussion
The design of predictive models is con-

troversial since a big data set is needed. It’s 
essential to use patient planning informa-
tion from various centers. Therefore, it is  

Different Features Families/ROIs PTV PTV-All PTV-LN Rectum Bladder

First-Order
Max 0.079 0.209 0.204 0.512 0.716

Mean 0.032 0.050 0.045 0.058 0.056

GLCM
Max 0.163 0.670 0.402 0.603 0.858

Mean 0.021 0.084 0.080 0.060 0.067

GLDM
Max 0.212 0.272 0.289 0.465 0.602

Mean 0.036 0.077 0.075 0.090 0.079

GLRLM
Max 0.491 0.215 0.215 0.434 0.543

Mean 0.062 0.079 0.078 0.086 0.544

GLSZM
Max 1.996 0.728 0.737 1.835 1.908

Mean 0.221 0.179 0.186 0.180 0.193

NGTDM
Max 0.221 0.278 0.311 0.263 0.224

Mean 0.063 0.145 0.144 0.090 0.093
ROI: Region of Interest, PTV: Planning Target Volume, LN: Lymph Node, GLCM: Gray Level Co-occurrence Matrix, GLDM: 
Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray Level Size Zone Matrix, NGTDM: 
Neighboring Gray Tone Difference Matrix

Table 1: The mean and maximum coefficient of variation values of all region of interests for each 
of the four dosiomics features’ families.
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necessary to evaluate the reproducibility and 
stability of these features against influential 
factors before modeling. 

Recently, several studies have been conduct-

ed on the stability of extracting dosiomics fea-
tures concerning various parameters related 
to different treatment technologies, process-
es, and the technology used to produce dose  

Figure 3: Stability curves for all features families. Each features family stability curve represents 
a different region of interests. For each feature and region of interest, the coefficient of varia-
tion has been averaged across all patients. (GLCM: Gray Level Co-occurrence Matrix, GLDM: 
Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray Level Size 
Zone Matrix, NGTDM: Neighboring Gray Tone Difference Matrix)
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distributions in different radiation therapy 
centers [14-17]. In some studies, features were 
extracted from the dose distribution of the  
patients, who had different prescription doses, 
and then utilized as input for machine learning 
models to predict complications and prognosis 
after radiation therapy [2,7]. Additionally, the 
stability of dosiomics features was checked 
against various algorithms, versions of calcu-
lation algorithms, and different grid sizes for 
several patients with varying prescribed doses 
[15].

The current study is recognized as the first 
investigation into the stability of dosiomics 
features across different prescribed doses in 
radiation therapy. The CVs were calculated for 
each dosiomics feature, considering the dose 
distributions obtained from various prescribed 
doses. Subsequently, the study evaluated the 
stability of these features based on the cal-
culated CV values. According to the results, 
the majority of features in all patients and six 
different feature groups, across all ROIs, ex-
hibited high stability (71% of features with 
CV<0.1). According to the threshold CV val-
ue utilized in this study, it was observed that 
less than 6% of the features were deemed un-
stable, indicating a higher degree of variabil-
ity. Additionally, less than 2% of the features 
exhibited a notably high coefficient of varia-
tion (CV>0.5), showing a substantial level of  
variability in those specific features.

By analyzing all patients, ROIs, and groups 
of dosiomics features simultaneously, the 
study revealed that the GLSZM group exhib-
ited the most unstable features, characterized 
by the highest CV values. Following the GL-
SZM group, the subsequent groups with rela-
tively higher instability, in descending order, 
were GLCM, First-Order, GLDM, GLRLM, 
and NGTDM. Among the most frequent-
ly unstable features across all patients and 
ROIs in the GLSZM group were: SALGLE 
(44 occurrences), followed by SAHGLE (34 
occurrences), SAE (20 occurrences), LAL-
GLE (17 occurrences), and finally LGLZE  

(15 occurrences). The highest frequency of in-
stability for GLSZM-SALGLE was observed 
in PTV and rectum (10 occurrences), followed 
by bladder (9 occurrences), PTV-LN (8 occur-
rences), and finally PTV-All (7 occurrences). 
In other words, the most unstable features 
were GLSZM-SALGLE in PTV, followed 
by the rectum and bladder. Additionally, GL-
SZM-SAHGLE was the most frequent in PTV. 
Due to the high dose gradient in the PTV, the 
proximity of the bladder and rectal organs to 
the PTV, especially in the 3D-CRT treatment 
modality, prescribing different doses for the 
same designed plan causes high dose changes 
in pixel-to-pixel within the dose distribution, 
leading to significant changes in the values of 
these two features. As defined by SALGLE, 
the GLSZM feature group component mea-
sures the proportion of smaller regions with 
lower gray level values in the combined dose 
distribution through their joint distribution. 
SAHGLE measures the ratio in the image of 
the joint distribution of smaller-size regions 
with higher gray-level values. GLSZM quan-
tifies the gray level areas in the dose distribu-
tion. A gray level region consists of a connect-
ed voxel set with the same gray level intensity.

From the group of GLCM features, the 
most recurring features, namely GLCM-Clus-
ter Prominence and GLCM-Cluster Shade, 
were observed in PTV-All, PTV-LN organs  
(10 times), and in the bladder (7 times). It is 
worth mentioning that none of the features 
from the GLCM group were found among the 
unstable features in the PTV with a high dose 
gradient. Only one feature from the GLDM 
and GLRLM groups was identified as an un-
stable feature in PTV-LN (7 times) and rectum  
(5 times), respectively.

According to the results of this study, the 
findings align with most studies in this field, 
indicating that PTV has features with the high-
est coefficient of variation [14-16,18]. Addi-
tionally, textural features, especially GLCM 
and GLSZM, exhibit the most variability in 
recent studies [6-14,18]. However, in terms 
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of the number of unstable features consider-
ing the area analyzed in this study, the rec-
tum, PTV-LN, PTV-All, bladder, and PTV 
had the highest number of unstable features,  
respectively.

The high variability of some features based 
on the selected ROIs contradicted the results 
of the study by Adachi et al., [19]. However, 
in their study, only the reproducibility of do-
siomics features against different algorithms 
of treatment design systems was evaluated in 
lung patients treated using the SBRT method. 
They compared the reproducibility values ob-
tained from different algorithms for different 
groups of patients with different prescription 
doses. The results of their study indicated that 
changes in the prescribed dose, despite causing 
significant changes in the dosimetric factors 
resulting from DVH, did not cause a signifi-
cant difference in reproducibility among dif-
ferent groups with different prescribed doses.

In this research, not only the stability of 
the features was investigated for each patient 
separately, but also the CV values between the 
10 studied patients were averaged once again. 
Figure 3 shows the results were more distinct 
than the previous findings: PTV-LN exhibited 
the highest coefficient of variation across all 
feature groups except GLRLM and First-Order 
groups. Within the GLRLM group, the rectum 
exhibited the highest CV value. Similarly, in 
the First-Order group, the PTV-All displayed 
the highest CV value. Furthermore, the most 
unstable features (CV>0.25) were observed in 
the GLCM group, specifically relating to the 
bladder, rectum, and PTV-LN. In the GLDM 
group, the unstable features were associated 
with the PTV-LN. As for the GLSZM group, 
the unstable features were linked to the rec-
tum, PTV-All, and PTV-LN. In the NGTDM 
group, the unstable features were connected to 
the PTV-LN. No features with CV>0.25 were 
identified in the remaining two groups.

Conclusion
In this study, the stability of extracting  

dosiomics features against different prescrip-
tion doses was evaluated for 10 prostate can-
cer patients. The degree of variability is not 
negligible based on the ROI and the group of 
desired features in dosiomics. Therefore, the 
total prescribed dose should be considered as 
a contributing factor when assessing the sub-
stantial variability of dosiomics features in 
stability studies focused on dosiomics feature 
extraction.
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