Evaluation of Variability of Dosiomics
Features with Varying Prescribed Dose in
Prostate Cancer

Marziyeh Mirzaeiyan (PhD)'®, Simin Hemati (MD)?, Ali Akhavan
(MD)?, Mahnaz Etehadtavakol (PhD)', Zahra Sharifonnasabi
(PhD)3, Alireza Amouheidari (MD)% Atoosa Adibi (MD)s,
Hossein Khanahmad (MD, PhD)?, Parvaneh Shokrani (PhD)™

ABSTRACT

Background: Dosiomics involves converting 3D dose distribution matrices into
quantifiable data for analysis. Evaluating the stability of dosiomics features against dif-
ferent prescribed doses is essential before utilizing them for treatment plan assessment.

Objective: The current study aimed to investigate dosiomics features variability
resulting from different prescribed doses in 3D conformal radiotherapy treatment plans
of prostate cancer patients.

Material and Methods: This retrospective cross-sectional study is conducted
based on data from ten prostate cancer patients, and their dose matrices were ana-
lyzed to extract features. The stability of dosiomics features was evaluated using the
Coeflicient of Variation (CV).

Results: For each patient, 372 features were extracted for each of the five selected
regions of interest. Features with a CV>0.25 have been considered with higher vari-
ability. Among the Gray Level Size Zone Matrix group, the Planning Target Volume
(PTV) exhibited the highest CV value. Overall, 71% of the features had a CV<0.1,
while 5.9% of those had a CV>0.25. Less than 2% of the features had a CV>0.5, and
only less than 1% had a CV>1. Features with a CV>0.25 were as follows: 33 features
in PTV, 60 features in PTV-AlL, 63 features in PTV-Lymph Node, 65 features in the
rectum, and 54 features in the bladder.

Conclusion: The prescribed dose significantly influences the variability of do-
siomics features during extraction. Understanding these changes is essential for the
optimal application of dosiomics in treatment planning for cancer.
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Introduction
osiomics features are employed to advance the prediction of
treatment outcomes and complications in radiation therapy. Do-
siomics involves the conversion of the calculated 3D dose distri-
bution matrix from treatment plans into quantitative data, which is sub-
sequently analyzed for modeling Tumor Control Probability (TCP) and
Normal Tissue Complication Probability (NTCP) [1-8]. Dosiomics fea-
tures specify the statistical and spatial relationships of voxels in the dose
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matrix and also extract several spatial features
through quantitative analysis based on multi-
dimensional data, such as shape, statistics, and
texture features [1,3,7,9]. Dosiomics, incor-
porating spatial dose distribution information,
can outperform models based on clinical char-
acteristics and dosimetric factors from Dose
Volume Histograms (DVH). By considering
spatial information, dosiomics captures details
and correlations within the treatment area,
enhancing the accuracy of NTCP and TCP
models. Thus, dosiomics offers a promising
approach for improving treatment outcome
predictions compared to DVH-based models.
This highlights the potential of dosiomics as
a valuable approach for enhancing treatment
outcome predictions compared to DVH-based
models. Dosiomics can enhance the prediction
of radiation-induced complications in models
and the potential for tumor control after radia-
tion therapy [1-4,6-13]. The use of dosiomics
features for constructing predictive models in
machine learning methods requires major data
collected from different centers. However,
a key concern arises regarding the potential
impact of variations in prescribed doses for
patients, the utilization of different technolo-
gies, and the diverse methods to calculate dose
distribution across various centers. Further,
these variations can undermine the efficiency
of the dosiomics features extraction. On the
other hand, some dosiomics features are sensi-
tive to factors related to the dose distribution
calculation process in treatment plans, such as
calculation grid size [14-16], type and version
of calculation algorithms [15], and cube pixel
spacing size [16]. The stable and reproducible
features have to be identified before analyzing
dosiomics data since features with low stabil-
ity can yield false findings and non-reproduc-
ible models.

While some previous studies have examined
the stability of extracting dosiomics features
against some influencing factors related to the
dose distribution calculation process, the sta-
bility of dosiomics feature extraction has not

been investigated against different prescrip-
tion doses. Therefore, this study aimed to eval-
uate the stability of dosiomics features using
different prescribed dose values: 67, 69, 71,
and 73 Gy in prostate cancer patients.
Material and Methods
Data Prescribed
Dose

In this retrospective cross-sectional study,
the treatment planning data were collected
from ten prostate cancer patients with pelvic
lymph node involvement (or patients requir-
ing pelvic prophylactic treatment). Computed
tomography-simulation images with a slice
thickness of 5 mm were taken with patients
in the supine position using a SOMATOM
Definition AS or SOMATOM Confidence CT
scanner (Siemens, Germany). The axial plane
of'the CT images had a matrix of 512x512 with
a pixel size ranging from 0.77 to 0.98 mm. The
treatment plans for these patients were carried
out using the TIGRT Treatment Planning Sys-
tem (TPS) for the Siemens-Primus and energy
of the 15-megavoltage linear accelerator at
Harandi Charity Foundation (Isfahan, Iran).
In the present study, the prescribed dose for
the three-dimensional Conformal Radiation
Therapy (3D-CRT) treatment plans for pros-
tate patients was as follows: in the first stage,
treatment of the whole pelvis (PTV-AIl: PTV-
Lymph Node (PTV-LN) + Planning Target
Volume (PTV)) up to a dose of 45 Gy in 25
fractions. Then, in the second stage, boost
treatment was applied for different prescrip-
tion doses of 22, 24, 26, and 28 Gy (total
doses of 67-73 Gy in 36-39 fractions) to the
PTV. In stages of whole pelvis treatment and
boost treatment, 3D-CRT plans were designed
as four-field boxes with a 1 cm Multi-Leaf
Collimator (MLC) margin. The treatment plans
were optimized to ensure that at least 95% of
the prescribed dose was delivered to more
than 95% of the PTV-LN and PTV volume.
Also, the maximum dose of the plan should

Collecting and
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be less than 107% of the total prescribed dose.
Then, for each patient, four different dose
distributions (each patient with four different
prescribed doses) were extracted as DICOM
files (RT Dose & RT Structure).

Dosiomics Features Extraction

A total of eighteen First-Order dosiomics
features of the dose matrix and 75 texture
features, including GLCM (24 features), GL-
RLM (16 features), GLDM (14 features), GL-
SZM (16 features), and NGTDM (5 features)
[15], were extracted from Regions of Interests
(ROIs) in PTV, PTV-LN, PTV-All, bladder,
and rectum using the SlicerRadomics module
in 3D-Slicer software (version 5.3.0). To ex-
tract features after treatment planning, CT im-
ages along with RT structure and the 3D dose
matrix (RT dose) corresponding to four dose
distributions with prescribed doses of 67, 69,
71, and 73 Gy for each patient in DICOM for-
mat were exported from the TPS and imported
into the 3D-Slicer software. All dose distribu-
tions were resampled to a voxel size of 1x1x1
mm?® before extracting the dosiomics features.
Subsequently, the resampled dose distribution
was approximated between the minimum and
maximum dose with a fixed bin width of 1.

Data Analysis

The stability of feature extraction was evalu-
ated based on the Coefficient of Variation (CV),
defined as the ratio of the standard deviation
to the mean value [15,16]. The CV for each
feature was calculated based on four different
dose distributions for each patient and the five
ROIs. A threshold of CV>0.25 was employed
to identify features with a higher degree of
variability. The specific threshold value was se-
lected based on the stability curve, which plots
the normalized number of features against the
coefficient of variation, for all features and
ROIs. The threshold points for CV>0.25 were
determined based on the location, in which the
stability curve exhibited a noticeable break
or bend [14]. A difference was statistically

significant (P-value<0.05). The data was
analyzed using IBM SPSS version 27 and R
version 4.3.1.

Results

A total of 372 features were extracted for
each of the five selected ROIs (PTV, PTV-LN,
PTV-AIll, rectum, bladder). In Figure 1, the
CV values’ results are summarized in terms of
stability curves, where the normalized number
of features is plotted against the CV values
for all patients, ROIs, and considering all six
groups of dosiomics features simultaneously
(First-Order, GLCM, GLDM, GLRLM, GL-
SZM, NGTDM). Several features with cer-
tain values are not utilized in the curve rep-
resentation for better visibility regarding CV
changes. The analysis revealed that approxi-
mately 71% of the features had a CV less than
0.1. Additionally, around 5.9% of the features
had a CV exceeding 0.25, while less than
2% of the features had a CV greater than 0.5
(Figure 1). Furthermore, less than 1% of the
features exhibited a CV surpassing 1. The
number of features with CV>0.25 included:
33 features in PTV, 60 features in PTV-All, 63
features in PTV-LN, 65 features in rectum, and
finally, 54 features were found in the bladder.

Stability curves are separately displayed
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Figure 1: The coefficient of variation values
for all the patients and region of interests,
considering simultaneously all the four do-
siomics features families
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for each of the six different groups of fea- PTV had the highest CV value in the GLSZM
tures for all patients in Figure 2. Additionally, group, then bladder in First-Order, GLCM,
Table 1 presents these results in terms of mean GLDM, and GLRLM groups, and PTV LN in
and maximum CV values for the six feature the NGTDM features group.

families and all ROIs. According to Table 1, The most common dosiomics features with
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Figure 2: The coefficient of variation values for all patients and region of interests, considering
separately different six dosiomics features families. (GLCM: Gray Level Co-occurrence Matrix,
GLDM: Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray
Level Size Zone Matrix, NGTDM: Neighboring Gray Tone Difference Matrix)

4 \ J Biomed Phys Eng 2026; 16(1)



Dosiomics Variability vs. Prescription Dose

Table 1: The mean and maximum coefficient of variation values of all region of interests for each

of the four dosiomics features’ families.

Different Features Families/ROls PTV PTV-AIl PTV-LN Rectum Bladder
. Max 0.079 0.209 0.204 0.512 0.716
First-Order

Mean 0.032 0.050 0.045 0.058 0.056
GLCM Max 0.163 0.670 0.402 0.603 0.858
Mean 0.021 0.084 0.080 0.060 0.067
Max 0.212 0.272 0.289 0.465 0.602

GLDM
Mean 0.036 0.077 0.075 0.090 0.079
GLRLM Max 0.491 0.215 0.215 0.434 0.543
Mean 0.062 0.079 0.078 0.086 0.544
Max 1.996 0.728 0.737 1.835 1.908

GLSZM
Mean 0.221 0.179 0.186 0.180 0.193
Max 0.221 0.278 0.311 0.263 0.224

NGTDM
G Mean 0.063 0.145 0.144 0.090 0.093

ROI: Region of Interest, PTV: Planning Target Volume, LN: Lymph Node, GLCM: Gray Level Co-occurrence Matrix, GLDM:
Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray Level Size Zone Matrix, NGTDM:

Neighboring Gray Tone Difference Matrix

CV>(0.25 are as follows:

For PTV: GLSZM-SALGLE (10 occurrenc-
es), GLSZM-SAHGLE (9 occurrences), and
GLSZM-SAE (8 occurrences). The maximum
CV value of 1.99 was obtained for patient 7
and the SZM-SAHGLE feature.

For PTV-All: GLCM-Cluster Prominence
and GLCM-Cluster Shade (10 occurrences),
GLSZM-SALGLE (7 occurrences), GLSZM-
SAHGLE (6 occurrences), GLSZM-LGLZE,
and GLSZM-LALGLE (5 occurrences). The
maximum CV value of 0.72 was obtained for
patient 6 and the SZM-SALGLE feature.

For PTV-LN: GLCM-Cluster Prominence
and GLCM-Cluster Shade (10 occurrences),
GLSZM-SALGLE (8 occurrences), GLSZM-
SAHGLE, and GLDM-SDHGLE (7 occur-
rences), GLSZM-LALGLE (5 occurrences).
The maximum CV value of 0.73 was obtained
for patient 6 and the SZM-SALGLE feature.

For rectum: GLSZM-SALGLE (10 occur-
rences), GLSZM-SAHGLE, and GLRLM-
LGLRE (5 occurrences). The maximum CV
value of 1.83 was obtained for patient 2 and
the SZM-SALGLE feature.

For bladder: GLSZM-SALGLE (9 occur-
rences), GLSZM-SAHGLE, GLCM-Cluster
Prominence, and GLCM-Cluster Shade (7
occurrences), GLSZM-SAE (6 occurrences).
The maximum CV value of 1.9 was obtained
for patient 4 and the SZM-SALGLE feature.

Figure 3 displays the stability curves of
different groups of dosiomics features for
various ROIs. However, Figure 1 shows that
each patient was separately examined, and
Figure 3 presents the average values of CV
related to each feature and ROI across all
patients. Accordingly, the highest CV value
was observed for PTV in the GLRLM group
(CV<0.17), for PTV-LN in the GLCM group
(CV>0.3), for PTV-All in the GLSZM group
(CV>0.25), for rectum in the GLSZM group
(CV<0.3), and bladder in the GLCM group
(CV<0.3).

Discussion

The design of predictive models is con-
troversial since a big data set is needed. It’s
essential to use patient planning informa-
tion from various centers. Therefore, it is

J Biomed Phys Eng 2026; 16(1)
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necessary to evaluate the reproducibility and
stability of these features against influential
factors before modeling.

Recently, several studies have been conduct-
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ed on the stability of extracting dosiomics fea-
tures concerning various parameters related
to different treatment technologies, process-
es, and the technology used to produce dose
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Figure 3: Stability curves for all features families. Each features family stability curve represents
a different region of interests. For each feature and region of interest, the coefficient of varia-
tion has been averaged across all patients. (GLCM: Gray Level Co-occurrence Matrix, GLDM:
Gray Level Dependence Matrix, GLRLM: Gray Level Run Length Matrix, GLSZM: Gray Level Size
Zone Matrix, NGTDM: Neighboring Gray Tone Difference Matrix)
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distributions in different radiation therapy
centers [ 14-17]. In some studies, features were
extracted from the dose distribution of the
patients, who had different prescription doses,
and then utilized as input for machine learning
models to predict complications and prognosis
after radiation therapy [2,7]. Additionally, the
stability of dosiomics features was checked
against various algorithms, versions of calcu-
lation algorithms, and different grid sizes for
several patients with varying prescribed doses
[15].

The current study is recognized as the first
investigation into the stability of dosiomics
features across different prescribed doses in
radiation therapy. The CVs were calculated for
each dosiomics feature, considering the dose
distributions obtained from various prescribed
doses. Subsequently, the study evaluated the
stability of these features based on the cal-
culated CV values. According to the results,
the majority of features in all patients and six
different feature groups, across all ROlIs, ex-
hibited high stability (71% of features with
CV<0.1). According to the threshold CV val-
ue utilized in this study, it was observed that
less than 6% of the features were deemed un-
stable, indicating a higher degree of variabil-
ity. Additionally, less than 2% of the features
exhibited a notably high coefficient of varia-
tion (CV>0.5), showing a substantial level of
variability in those specific features.

By analyzing all patients, ROIs, and groups
of dosiomics features simultaneously, the
study revealed that the GLSZM group exhib-
ited the most unstable features, characterized
by the highest CV values. Following the GL-
SZM group, the subsequent groups with rela-
tively higher instability, in descending order,
were GLCM, First-Order, GLDM, GLRLM,
and NGTDM. Among the most frequent-
ly unstable features across all patients and
ROIs in the GLSZM group were: SALGLE
(44 occurrences), followed by SAHGLE (34
occurrences), SAE (20 occurrences), LAL-
GLE (17 occurrences), and finally LGLZE

(15 occurrences). The highest frequency of in-
stability for GLSZM-SALGLE was observed
in PTV and rectum (10 occurrences), followed
by bladder (9 occurrences), PTV-LN (8 occur-
rences), and finally PTV-All (7 occurrences).
In other words, the most unstable features
were GLSZM-SALGLE in PTV, followed
by the rectum and bladder. Additionally, GL-
SZM-SAHGLE was the most frequent in PTV.
Due to the high dose gradient in the PTV, the
proximity of the bladder and rectal organs to
the PTV, especially in the 3D-CRT treatment
modality, prescribing different doses for the
same designed plan causes high dose changes
in pixel-to-pixel within the dose distribution,
leading to significant changes in the values of
these two features. As defined by SALGLE,
the GLSZM feature group component mea-
sures the proportion of smaller regions with
lower gray level values in the combined dose
distribution through their joint distribution.
SAHGLE measures the ratio in the image of
the joint distribution of smaller-size regions
with higher gray-level values. GLSZM quan-
tifies the gray level areas in the dose distribu-
tion. A gray level region consists of a connect-
ed voxel set with the same gray level intensity.

From the group of GLCM features, the
most recurring features, namely GLCM-Clus-
ter Prominence and GLCM-Cluster Shade,
were observed in PTV-All, PTV-LN organs
(10 times), and in the bladder (7 times). It is
worth mentioning that none of the features
from the GLCM group were found among the
unstable features in the PTV with a high dose
gradient. Only one feature from the GLDM
and GLRLM groups was identified as an un-
stable feature in PTV-LN (7 times) and rectum
(5 times), respectively.

According to the results of this study, the
findings align with most studies in this field,
indicating that PTV has features with the high-
est coefficient of variation [14-16,18]. Addi-
tionally, textural features, especially GLCM
and GLSZM, exhibit the most variability in
recent studies [6-14,18]. However, in terms

J Biomed Phys Eng 2026; 16(1)
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of the number of unstable features consider-
ing the area analyzed in this study, the rec-
tum, PTV-LN, PTV-All, bladder, and PTV
had the highest number of unstable features,
respectively.

The high variability of some features based
on the selected ROIs contradicted the results
of the study by Adachi et al., [19]. However,
in their study, only the reproducibility of do-
siomics features against different algorithms
of treatment design systems was evaluated in
lung patients treated using the SBRT method.
They compared the reproducibility values ob-
tained from different algorithms for different
groups of patients with different prescription
doses. The results of their study indicated that
changes in the prescribed dose, despite causing
significant changes in the dosimetric factors
resulting from DVH, did not cause a signifi-
cant difference in reproducibility among dif-
ferent groups with different prescribed doses.

In this research, not only the stability of
the features was investigated for each patient
separately, but also the CV values between the
10 studied patients were averaged once again.
Figure 3 shows the results were more distinct
than the previous findings: PTV-LN exhibited
the highest coefficient of variation across all
feature groups except GLRLM and First-Order
groups. Within the GLRLM group, the rectum
exhibited the highest CV value. Similarly, in
the First-Order group, the PTV-All displayed
the highest CV value. Furthermore, the most
unstable features (CV>0.25) were observed in
the GLCM group, specifically relating to the
bladder, rectum, and PTV-LN. In the GLDM
group, the unstable features were associated
with the PTV-LN. As for the GLSZM group,
the unstable features were linked to the rec-
tum, PTV-All, and PTV-LN. In the NGTDM
group, the unstable features were connected to
the PTV-LN. No features with CV>0.25 were
identified in the remaining two groups.

Conclusion
In this study, the stability of extracting

dosiomics features against different prescrip-
tion doses was evaluated for 10 prostate can-
cer patients. The degree of variability is not
negligible based on the ROI and the group of
desired features in dosiomics. Therefore, the
total prescribed dose should be considered as
a contributing factor when assessing the sub-
stantial variability of dosiomics features in
stability studies focused on dosiomics feature
extraction.
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