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ABSTRACT

Background: Nonalcoholic Fatty Liver Disease (NAFLD) as a prevalent condition
can significantly have health implications. Early detection and accurate grading of
NAFLD are essential for effective management and treatment of the disease.

Objective: The current study aimed to develop an advanced hybrid machine-
learning model to classify NAFLD grades using ultrasound images.

Material and Methods: In this analytical study, ultrasound images were ob-
tained from 55 highly obese individuals, who had undergone bariatric surgery and used
histological results from liver biopsies as a reference for NAFLD grading. The features
were extracted from the ultrasound images using popular pretrained Convolutional
Neural Network (CNN) models, including VGG19, MobileNet, Xception, Inception-
V3, ResNet-101, DenseNet-121, and EfficientNet-B7. The fully connected layers were
removed from the CNN models and also used the remaining structure as a feature ex-
tractor. The most relevant features were then selected using the minimum Redundancy
Maximum Relevance (mRMR) method. We then used four classification algorithms:
Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Multilayer Per-
ceptron (MLP) neural network, and Random Forest (RF) classifiers, to categorize the
ultrasound images into four groups based on liver fat level (healthy liver, low fat liver,
moderate fat liver, and high-fat liver).

Results: Among the different CNN models and classification methods, Efficient-
Net-B7 and RF achieved the highest accuracy. The average accuracies of the LDA,
MLP, SVM, and RF classifiers for the feature extraction method with EfficientNet-B7
were 88.48%, 93.15%, 95.47%, and 96.83%, respectively. The proposed automatic
model can classify NAFLD grades with a remarkable accuracy of 96.83%.

Conclusion: The proposed automatic classification model using EfficientNet-B7
for feature extraction and a Random Forest classifier can improve NAFLD diagnosis,
especially in regions, in which access to professional and experienced medical experts
is limited.
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Introduction
onalcoholic Fatty Liver (NAFL) disease affects individuals
worldwide, with an estimated prevalence of around 20-30%
in developed countries [1]. The liver encounters challenges in-
creased in metabolizing fats, resulting in the accumulation of fat within
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liver tissues and the subsequent development
of a fatty liver. NAFL disease often presents
without noticeable symptoms and is frequent-
ly detected in its advanced and potentially
dangerous stages; it occurs when the liver
struggles to metabolize fats, leading to the ac-
cumulation of fat within liver tissues. Early
and accurate diagnosis of NAFL disease and
its severity is crucial to prevent disease pro-
gression and facilitate timely and appropriate
treatment. Liver biopsy and pathological labo-
ratory results are widely regarded as the gold
standards for diagnosing and assessing the se-
verity of liver conditions. However, it is im-
portant to note that these methods are invasive
with potential risks, such as pain and bleeding
[2].

Ultrasound imaging, as a powerful and uni-
versal diagnostic tool for physicians and radi-
ologists, is widely used to diagnose NAFL dis-
ease in most imaging methods. Ultrasound, as
a diagnostic tool for patients with NAFL dis-
ease, has some advantages, primarily due to its
non-invasive nature; additionally, it is a cost-
effective and widely accessible imaging tech-
nique that provides real-time imaging of the
liver, leading to dynamic monitoring of chang-
es over time. This non-invasive approach is
particularly valuable for patients with NAFL
disease, as it eliminates the need for invasive
procedures while enabling long-term monitor-
ing and management. Furthermore, ultrasound
is relatively safe without any exposure of pa-
tients to ionizing radiation, resulting in a pre-
ferred imaging modality for certain patients,
such as pregnant women and children [3, 4].
NAFL disease and its severity can be diag-
nosed based on the assessment of ultrasound
images by a highly expert radiologist, visually,
which is tedious and subjective. Advanced ar-
tificial intelligence tools to quantitatively ana-
lyze ultrasound images can automate, improve
reliability, and provide objective estimation of
the NAFL disease grade, helping physicians
and radiologists achieve higher accuracy and
efficiency in diagnosis [5].

Ribeiro and Sanches et al. [6] extracted
the features of spectral images and radio fre-
quency to detect the NAFL grade based on the
Bayesian method as a classifier. Kyriakou et
al. [7] extracted texture features from ultra-
sound images and used the K-Nearest Neigh-
bor (KNN) classifier to categorize the images
based on NAFL disease grades. Wan and Zhou
[8] extracted features using wavelet packet
transform and a Support Vector Machine
(SVM) classifier for this task. Acharya et al.
[9] extracted image features using three meth-
ods: texture features, wavelet transform, and
higher-order spectrum properties, and then
classified NAFL diseases using a decision tree.
Kopili et al. [10] extracted the texture fea-
tures of ultrasound images using a Gray-Level
Co-Occurrence Matrix (GLCM) and classified
these features using an SVM classifier. Naderi
et al. [11] extracted texture features from ul-
trasound images using GLCM, employing the
minimum Redundancy and Maximum Rel-
evance (mMRMR) technique for feature selec-
tion, and then categorized NAFL disease into
four groups via the AdaBoost classifier. Hassan
et al. [12] classified NAFL disease using im-
age features using the stacked scattered auto-
matic encoder method and the Softmax classi-
fier and compared their proposed method with
multiclass SVM, KNN, and simple Bayesian
methods. Saba et al. [13] extracted features
from ultrasound images utilizing five feature
extraction methods—Harlick, Gupta, Fourier,
Basic geometric, DCT, and Gabor—and sub-
sequently classified them through backpropa-
gation neural network classification. However,
these methods have problems such as the in-
ability to extract all the effective features of
the image, high computational complexity, the
dependence of the result of this algorithm on
the segmentation method, and determination
of the area to be evaluated by an expert [14].

Deep learning approaches based on Con-
volutional Neural Network (CNN) models
have received considerable attention in the
medical field [15]. Compared with traditional
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image recognition and classification ap-
proaches, which require manual feature ex-
traction and optimal selection, CNN models
can automatically extract useful image fea-
tures. However, the training of a CNN model
conventionally demands a substantial volume
of input data, posing challenges for research-
ers engaged in medical image processing via
CNN methodologies. Due to the shortage of
adequately labeled medical images, training
a CNN model becomes challenging, and in
some cases, impossible. As a solution, trans-
fer learning methods have been employed,
which involves utilizing the knowledge ac-
quired from a pre-trained CNN model to ad-
dress the problem, rather than constructing an
entirely new CNN model. The usefulness of a
pretrained CNN model depends on its ability
to adapt to images outside the main education-
al dataset [16]. Byra et al. [17] pioneered the
integration of transfer learning in fatty liver
classification, employing Inception-ResNet-
V2 for feature extraction from ultrasound im-
aging sequences and conducting comparative
analyses against the hepatorenal index and
GLCM algorithms. Constantinescu et al. [18]
classified ultrasound images using two pre-
trained networks, VGG19 and Inception-V3,
using the Softmax classifier.

This study aimed to develop an advanced
hybrid model integrating deep transfer learn-
ing through CNN models and diverse ma-
chine-learning methods to classify the grade
of NAFL disease. The classification relies
on ultrasound images obtained from 55 indi-
viduals with severe obesity who underwent
bariatric surgery. The proposed methodology
involves employing transfer learning across
distinct CNN models to extract comprehen-
sive features from liver ultrasound images,
subsequently refining and selecting the most
discriminative features. Finally, these images
were classified using a Random Forest (RF)
classification method into four groups. In oth-
er words, the current study aimed to use the
capabilities of deep learning and traditional

machine learning methods concurrently. In the
present study, the proposed novel approach
aimed to achieve high accuracy and robust-
ness in medical image analysis. Additionally,
this study can significantly contribute to vari-
ous clinical applications.

Material and Methods

Dataset

In this analytical study, liver ultrasound im-
ages of 55 highly obese patients, who had
undergone obesity surgery, were obtained.
The datasets, obtained one or two days pre-
operatively, were obtained from the Depart-
ment of Internal Medicine, Warsaw Univer-
sity of Medical Sciences, Poland. As part of
the university’s routine protocol, every patient
who underwent obesity surgery underwent
a biopsy, followed by a histological evalua-
tion of the liver by a pathologist. Fatty liver
levels were defined based on the percentage
of hepatocytes with fatty infiltration [17].
Figure 1 illustrates the distribution of fatty liv-
er levels derived from biopsy results obtained
by pathologists from the patient dataset. Data
[19] were classified into four classes accord-
ing to fatty liver stages: healthy liver (steato-
sis level <5%, n=17), low-fat liver (steatosis
level 5-30%, n=20), moderate fat liver (ste-
atosis level 30-70%, n=8), and high-fat liver
(steatosis level >70%, n=10).

Ultrasound images were acquired using
a GE Vivid E9 ultrasound device with a 2.5
MHz probe with a resolution of 434x636 pix-
els. A sequence of images corresponding to a
heartbeat was obtained and saved in DICOM
format for each patient. Due to the movement,
speckle pattern, and relative position of the
liver and kidney, the images in each sequence
varied slightly for each patient. In addition, the
number of images per sequence was not fixed
and depended on the frame rate of the device-
scanner probe. From each image sequence, ten
images were selected for further processing,
which increased the total number of images
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Figure 1: Distribution of liver fat levels in the
study population based on biopsy results
obtained from 55 highly obese patients who
underwent obesity surgery. The liver fat lev-
els were classified into four groups: healthy
liver (steatosis level <5%), low fat (5%< ste-
atosis level <30%), moderate fat (30%< ste-
atosis level <70%), and high fat (steatosis
level 270%). The dataset was obtained from
the Department of Internal Medicine, War-
saw University of Medical Sciences, Poland
and was divided based on the percentage of
hepatocytes with fatty infiltration.

in our dataset and provided our models with
more diverse data. The final dataset consisted
of 550 ultrasound images (10 images per in-
dividualx55 individual). To ensure a robust
evaluation and address potential correlations
due to shared patient data, the dataset was
randomly split into five folds. For each fold,
one-fifth of the patients (11 patients) were des-
ignated as the test set, with the remaining used
for training. This random splitting and testing
process was repeated 50 times to mitigate da-
taset-specific biases and provide a comprehen-
sive evaluation. The dataset was divided into
four groups based on fatty liver levels: healthy
liver, low-, moderate-, and high-fat liver.

Preprocessing

During the preprocessing step, the numbers
and signals of the ultrasound images were
removed. Thereafter, the image margins and
any extraneous data points were cropped to
isolate the central Region of Interest (ROI),
in which encompasses all diagnostically rel-
evant features while reducing image dimen-
sionality for computational efficiency. As a
result, the initial image dimensions were re-
duced from 434x636 pixels to 399%x399 pix-
els. Figure 2 exhibits a sample image, along-
side the outcomes post-preprocessing. For the

Figure 2: (a) sample the original image (b) the result after preprocessing
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enhancement of model robustness and data
heterogeneity, horizontal flipping was em-
ployed as a data augmentation strategy. This
simple yet effective method involved creating
mirrored versions of the images horizontally,
effectively doubling the number of images for
training. Unlike more complex augmentations
like rotation or scaling, horizontal flipping
maintains the anatomical consistency crucial
for medical imaging, ensuring that no mis-
leading features are introduced. Data augmen-
tation plays a crucial role in machine learn-
ing, particularly when working with limited
datasets. By augmenting the existing dataset,
we can introduce variations and expand the
training samples, causing the model to learn
from a broader set of examples, leading to en-
hanced performance and better adaptation to
real-world scenarios.

Feature extraction
pretrained CNN
Feature extraction is an essential step in any
pattern recognition task and particularly im-
portant for classifying NAFL disease in ultra-
sound images, due to the low quality of the
images and the variability of fatty liver grades
[20]. This study utilized seven popular pre-
trained CNN models trained on the ImageN-
et dataset to extract features: VGG19, Mo-
bileNet, Xception, Inception V3, ResNet-101,
DenseNet-121, and EfficientNet-B7. To ex-
tract features using the pretrained CNN mod-
els, the last fully connected layers (output lay-
ers) were removed, and the last layer of the
CNN structure was considered as the feature
extractor. Specifically, the weights of the last
layer were extracted in the network as image
features; these weights are typically learned
during the training process and capture high-
level representations of the input data. By us-
ing the last layer of the CNN as the feature
extractor, the learned features were used to
classify NAFL disease in ultrasound images
without requiring extensive training on the
small NAFL dataset. Post-feature extraction,

using the

the data were normalized, and any features
with zero variance were excised, resulting in
ensuring that the extracted features were com-
parable across different models and that any
noisy or uninformative features were removed.

The VGG model, a deep-learning network
developed by Oxford University in 2014 [21],
1s known for its simplicity, practicality, and ex-
ceptional performance in image classification
and target recognition tasks with CNN mod-
els. VGG19 with 193 million parameters is a
VGG network with 19 layers. Another notable
pre-trained CNN model, the inception network
[22], introduced by Google in 2014, features
22 layers employing 1x1, 3%3, and 5x5 filter
sizes for effective feature extraction, housing
five million parameters. The innovation of the
inception network is the use of multiple paral-
lel convolutional branches with different ker-
nel sizes, which capture features at different
scales and reduce the computational cost. One
year later, Google introduced the Inception
V3 model from the inception family. Unlike
previous versions of inception, this version
replaced 5x5 filters with two 3%3 filters to re-
duce the number of required parameters and
calculations without affecting the network
performance [23]. Inception V3 has 43 layers.
The ResNet, which was introduced in 2015,
demonstrated outstanding performance with
significantly fewer parameters than VGG. In
this study, we utilized the ResNet-101 mod-
el, which consists of 101 layers, leading to a
deeper and more complex network architec-
ture that can extract intricate features and po-
tentially improve the model’s performance on
the given task. Another CNN model used in
this research was the Xception architecture,
introduced in 2017 by Chollet [24]. The Xcep-
tion architecture comprises 14 modules and
36 convolutional layers. Except for the initial
and final modules, linear residual connections
were used to connect the remaining modules.
MobileNet introduced a new type of convolu-
tion called depth-wise separable convolution
to reduce the number of parameters. In this
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architecture, the max-pooling layer was omit-
ted, and stride 2 convolution was employed for
the reduction of spatial dimensions. Although
the size and computational cost of MobileNet
are 1/30 the size of VGG16, it can achieve
similar accuracy [25]. Another pre-trained
CNN model used in this study was DenseNet
with a 7x7 convolution layer after the input
layer, followed by a 3%x3 max-pooling layer.
The grid has four dense blocks, each compris-
ing at least six consecutive 1x1 convolution
layers, followed by a 3%3 convolution layer.
The DenseNet types have 121, 169, 201, or
264 layers, but all of these networks have
four dense blocks, differing only in the num-
ber of consecutive convolution layers in each
dense block [26]. In this study, DenseNet-121
we also used. In 2019, the EfficientNet Net-
work was introduced by Tan and Le [27]. Ef-
ficientNet has significantly fewer parameters
than those of other existing CNN models, with
almost the same accuracy. Moreover, its ac-
curacy and efficiency generally surpass those
of the Inception-V3, VGG19, and MobileNet
models. EfficientNet is based on the concept of
hybrid scaling, which forms its main principle
and comprises a series of eight models, namely
EfficientNet-BO0 to EfficientNet-B7, with vary-
ing parameter sizes ranging from 5.3 million
to 66 million. In this study, the EfficientNet-
B7 model was specifically employed, consist-
ing of 66 million parameters. By utilizing this
model, features were extracted from images
with a high level of complexity and detail, po-
tentially leading to improved performance and
accuracy in our analysis.

Feature selection

Feature selection is a crucial step in the de-
velopment of machine learning and pattern
recognition models, as it helps to identify the
most relevant features for the target classifi-
cation task while alleviating computational
complexity and mitigating overfitting. In this
study, the minimum redundancy maximum
relevance (mRMR) technique was utilized to

select the most discriminative features ob-
tained from several pre-trained CNN archi-
tectures. The mRMR method is a supervised
feature selection approach that considers both
the relevance and redundancy of the features.
Specifically, the mRMR technique employs
Spearman’s rank correlation coefficient to as-
sess the relevance of individual features to the
target variable and their redundancy relative to
other features. By ranking the features based
on their relevance and redundancy scores,
the mRMR method can identify a subset of
features that are both highly relevant to the
classification task and minimally redundant
with each other [28, 29]. The mRMR method
[28, 29], possesses the advantage of handling
high-dimensional data, which proves particu-
larly valuable in image classification, where
the number of features can be exceedingly
large. By effectively selecting a subset of the
most pertinent and informative features, the
mRMR method mitigates the issue of dimen-
sionality while retaining critical information.
Consequently, this capability enhances the ef-
ficiency of image classification tasks. In the
present study, the mRMR method we imple-
mented to the features extracted from seven
popular pre-trained CNN models, including
VGG19, MobileNet, Xception, Inception-V3,
ResNet-101, DenseNet-121, and EfficientNet-
B7.

Classification

This study used four classification methods:
Linear Discriminant Analysis (LDA), SVM,
Multilayer Perceptron (MLP) neural network,
and RF. LDA is a well-known statistical meth-
od that maximizes the ratio of interclass to
intra-class dispersion and exhibits good clas-
sification accuracy in compromising the pro-
cessing time and processing. In other words,
compared to other classifiers, the LDA classi-
fier is relatively simple to implement and quick
to train [30]. MLP is another machine-learning
method inspired by the learning process and
information processing in the human brain and
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can do complex analyses, such as those involv-
ing nonlinear models. MLP is a network of ar-
tificial neurons of feedforward layers and con-
sists of input, output, and hidden layers [31,
32]. For this classification, two hidden layers
were used. The ReLU function was used as the
activation function for the hidden layers of the
MLP classifier, while the SoftMax function
was used for its output layer. Another clas-
sifier was SVM, selecting a hyperplane with
a more reliable margin between two classes
[33]. The SVM algorithm utilizes nonlinear
mapping to transform the training data space
into a higher dimension. In this new dimen-
sional space, the SVM identifies a hyperplane
that effectively separates instances of one class
from those of other classes and acts as a deci-
sion boundary, classifying the data points into
their respective classes. Through appropriate
nonlinear mapping, even two-class datasets
that are not linearly separable in the original
space can be successfully separated using a
hyperplane in the transformed dimension [34].
The SVM classifier from scikit-learn was uti-
lized in this study, with the default RBF ker-
nel function. The SVM is a binary classifier.
A multiclass problem can be solved by com-
bining a two-class SVM. The strategy used
was one class versus the remaining classes to
categorize each class. The output of the SVM
binary classifiers was then combined to solve
the multiclass problem [35]. The last classifi-
cation method utilized in this study was RF,
as a supervised learning classification and an
ensemble learning method, can be used for
pattern recognition and machine learning for
high-accuracy classification [36]. This algo-
rithm also combines multiple decision trees.
The RF generates decision trees using a subset
of randomly selected placement training data-
sets, showing decision trees in this classifier
used a slightly different training dataset that
is called bootstrapping. The size of the dataset
used for each tree was the same as that of the
training dataset. The final result of this classi-
fier entails voting on those from the decision

trees. Increasing the number of decision trees
in this algorithm does not compromise the
model’s performance but does slow down its
execution [37, 38].

Evaluation methods

In this study, the performance of our
proposed method was evaluated using sev-
eral metrics, including accuracy, sensitivity,
specificity, and F1-score. Sensitivity, the true
positive rate, is calculated as the proportion
of correctly predicted positive cases out of all
positive cases. Specificity, the true negative
rate, refers to the proportion of correctly pre-
dicted negative cases out of all negative cas-
es. Accuracy is defined as the ratio of correct
predictions to the total number of predictions.
The Fl-score is calculated as the harmonic
mean of precision and recall.

Proposed method

Figure 3 illustrates a block diagram of the
proposed method for classifying the severity
of NAFL disease from ultrasound images. Af-
ter collecting liver ultrasound images, prepro-
cessing was performed, including removing
numbers, symbols, and redundant informa-
tion. Images were initially 434x636 pixels but
were cropped to 399x399 pixels. We addressed
dataset correlations by employing repeated
5-fold cross-validation, ensuring compre-
hensive evaluation while mitigating potential
biases from shared patient data. Horizontal
flipping was also used for data augmentation,
enhancing model robustness. The pretrained
CNN models VGG19, MobileNet, Xception,
Inception-V3, Resent-101, DanseNet-121,
and EfficientNet-B7 were used to extract the
features. In feature extraction using pretrained
CNN models, we removed the last fully con-
nected layer (output layer) and considered the
remaining CNN structure as the feature ex-
tractor. We extracted the weights of the last
layer of the CNN model as image features. We
then normalized these features and removed
those with zero variance. Next, mRMR was

J Biomed Phys Eng 2025; 15(5)
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used for feature selection. The best features of
the pretrained CNN models were selected and
applied to the classifier input. Finally, images
were classified into four groups: no steatosis,
mild steatosis, moderate, and severe steatosis
levels from ultrasound images using different
classifiers: LDA, MLP, multiclass SVM, and
RF.

Results
The results of NAFL disease classification
into four classes with different pretrained

Feature extraction
using pre-trained
CNN models

Image input Pre-processing

CNN models as the feature extractor, mRMR
method as the feature selection, and all clas-
sifiers (LDA, MLP, SVM, and RF) are listed
in Table 1. The mRMR method can select a
small subset of highly informative features
from each CNN model, with an average re
duction of more than 90% in the number of
features, which not only improved compu-
tational efficiency but also enhanced the ac
curacy and generalization performance of
the subsequent classification models. The
highest accuracy values among the different

Classification with
4 classifiers of
LDA, SVM, MLP

and RF

Selection of best
features by mRMR

Figure 3: Block diagram illustrating the five-step process implemented to classify the liver fat
quantity from ultrasound images. These steps include Image input, Pre-processing, Feature ex-
traction using pre-trained CNN models, Selection of best features by mRMR, and Classifica-
tion with 4 classifiers: LDA (Linear Discriminant Analysis), SVM (Support Vector Machine), MLP
(Multi-Layer Perceptron), and RF (Random Forest).

Table 1: Accuracy of classifying NAFL disease into four grades using different pretrained CNN
models as the feature extractor and using all selected classifiers (LDA, MLP, SVM, and RF). The ac-
curacy is the percentage of images that are correctly classified by the model. (NAFL: Nonalcoholic
Fatty Liver, LDA: Linear Discriminant Analysis; MLP: Multilayer Perceptron; SVM: Support Vector
Machine; RF: Random Forest; Pre-trained CNN models: Convolutional Neural Networks that are
pre-trained on large datasets and can be used as feature extractors.

Pre-trained CNN Models LDA MLP SVM RF
Mobile Net 87.26+2.51 76.48+6.51 93.78+1.48 91.14+2.57
VGG 19 74.98+2.72 74.59+7.04 79.76+ 2.81 85.70+2.05
Xception 78.99£2.69 76.1245.87 92.58+2.44 87.64+2.32
DensNet121 76.50+2.67 79.28+6.02 84.12+2.69 84.20+2.70
Inception V3 74.87+3.04 77.5645.82 90.87+2.13 86.67+2.32
ResNet101 86.93+2.62 82.76+3.96 94.03+1.76 94.36+1.98
EfficientNet B7 88.48+2.26 93.15+2.46 95.47+1.81 96.83+1.59

LDA: Linear Discriminant Analysis, MLP: Multilayer Perceptron, SVM: Support Vector Machine, RF: Random Forest
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pretrained CNN models as feature extraction
methods were obtained for EfficientNet-B7
for different classifiers. The accuracies of the
LDA, MLP, SVM, and RF classifiers for ex-
tracted features using EfficientNet-B7 were
88.48, 93.15, 95.47, and 96.83%, respectively.
The accuracy of all classifiers in EfficientNet-
B7 was significantly higher than that of the
other pretrained CNN models. In addition, the
highest accuracy among the different classifi-
cation methods was obtained for the RF clas-
sifier. Therefore, the pretrained CNN model
named EfficientNet-B7 as the feature extrac-
tion method, along with the feature selection
using the mRMR and RF classifier, has the
highest accuracy of 96.83%. Table 2 presents
the results of classifying NAFL disease into

four categories (healthy liver, low, medium,
and high fatty liver levels) using Efficient
Net-B7 as the feature extractor and four clas-
sifiers (LDA, MLP, SVM, and RF), evaluated
by accuracy, sensitivity, specificity, and F1-
score. Figure 4 shows the ratio of the number
of features selected by the mRMR method
for feature selection from EfficientNet-B7 as
a feature extraction method to the accuracy
obtained by RF classification. The best 40
features of the EfficientNet-B7 model were
selected and applied to the classifier input. In
addition, Figure 5 shows the ratio of the num-
ber of decision trees in the RF classifier to the
obtained accuracy. The RF method with 90
decision trees achieved the highest accuracy.
Table 3 compares the results of the proposed

Table 2: Results of classifying NAFL disease into four grades (no steatosis, mild steatosis, mod-
erate, and severe steatosis) with the EfficientNet B7 as the feature extractor and all classifiers
(LDA, MLP, SVM, RF) based on accuracy, sensitivity, specificity, and F1-scores (NAFL: Nonalcoholic
Fatty Liver, LDA: Linear Discriminant Analysis, MLP: Multilayer Perceptron, SVM: Support Vector

Machine, RF: Random Forest)

Accuracy Sensitivity Specificity F1 score

No steatosis 93.33£3.59 94.66+5.47 98.67+1.33 95.73+2.57

SVM Mild steatosis 78.79+2.88 96.22+3.66 95.86+2.14 94.59+2.34
Moderate steatosis 88.48+5.54 93.29+14.22 99.30+0.78 94.42+3.28

Severe steatosis 92.12+3.39 97.55+11.15 99.52+0.63 97.66+2.28

No steatosis 92.25+1.81 92.16+3.76 96.49+1.98 92.16+2.63

Mild steatosis 83.09+3.05 87.10+4.18 91.26+2.54 86.40+3.59

LDA Moderate steatosis 91.46+2.55 80.77+6.01 97.84+1.31 84.00+6.48
Severe steatosis 94.81+1.52 92.10+4.99 97.16+1.62 90.57+3.77

No steatosis 96.56+1.92 93.36+4.07 98.02+1.81 94.39+3.02

Mild steatosis 94.49+2.18 91.60+4.26 96.22+1.95 92.35+2.96

MLP Moderate steatosis 96.57+1.65 95.62+3.91 96.73+1.75 89.08+4.77
Severe steatosis 98.68+0.98 94.25+4.45 99.64+0.53 96.17+£2.70

No steatosis 98.47+1.22 97.20+3.18 99.06+0.93 97.47+2.03

RF Mild steatosis 97.32+1.33 98.84+1.41 96.49+1.96 96.39+1.79
Moderate steatosis 98.69+0.76 92.34+4.43 99.78+0.40 95.32+2.76

Severe steatosis 99.18+0.67 96.15+3.16 99.89+0.29 97.78+1.77

SVM: Support Vector Machine, LDA: Linear Discriminant Analysis, MLP: Multilayer Perceptron, RF: Random Forest
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Figure 4: Ratio of the number of features
selected by the mRMR method from the Ef-
ficientNet B7 model to the accuracy of the
data obtained via RF (Random Forest) classi-
fication. The 40 best features of the Efficient-
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Figure 5: Ratio of the number of decision
trees in the RF (Random Forest) classifier to
the accuracy obtained. The highest accuracy
was obtained with 90 decision trees

Net B7 model were selected and applied to
the classifier input

Table 3: Comparison of the proposed method with other recent approaches in terms of the
classification of NAFL (Nonalcoholic Fatty Liver) disease. The table shows the accuracy of classi-
fying NAFL disease into four grades (healthy, low, moderate, and high) using different classifica-
tion methods and feature extraction methods. The accuracy is the percentage of images that are
correctly classified by the method.

Classification Accuracy
method (%)

Number .
Author’s Name Feature extraction

of Cases

32 wavelet packet transform-
Wan and Zhou [8] 590 SVM 85.8
based features

Acharya et al. [9] 100 Texture, HOS, DWT Decision Tree 93.3
Kuppili et al. [10] 63 GLCM SVM 86.42
Naderi et al. [11] 550 GLCM Adaboost 92.72

Hassan et al. [12] 110 SSAE Softmax 98
Saba et al. [13] 124 Harlick, Gupta, Fourier, basic back-propagation 976
geometric, DCT, Gabor neural network

Byra et al. [17] 550 Inception-ResNet-v2 SVM 96.3
Constantinescu et al. [18] 629 Inception-v3, VGG19 Softmax 93.23
Proposed method 550 EfficientNet-B7 RF 96.83

SVM: Support Vector Machine, HOS: Higher Order Statistics, DWT: Discrete Wavelet Transform, GLCM: Gray-Level Co-
Occurrence Matrix, SSAE: Stacked Sparse Autoencoder, DCT: Discrete Cosine Transform, RF: Random Forest
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method with other recent approaches for grad-
ing NAFLD disease. Table 3 compares the
number of datasets used, feature extraction
techniques, classification methods, and accu-
racies obtained.

Discussion

This study presented an automated medical
diagnostic system using advanced Al tech-
niques to grade NAFLD disease severity from
ultrasound images. A total of 550 ultrasound
images were used in the current study, which
was publicly available from the Department
of Internal Medicine, Medical University of
Warsaw, Poland. It is essential to emphasize
that this dataset was obtained through a col-
laborative effort involving pathologists and
physicians to ensure both its quality and rel-
evance within the medical domain. Features
were extracted from the ultrasound images
leveraging the pretrained CNN architectures
VGG19, MobileNet, Xception, Inception-V3,
ResNet-101, DenseNet-121, and EfficientNet-
B7. Subsequently, 40 of the best features were
selected using the mRMR method. Finally, the
images were classified into four classes using
LDA, multiclass SVM, MLP, and RF classi-
fiers. While the proposed automatic model
achieved a high accuracy of 96.83% in the de-
tection of NAFLD grade using EfficientNet-
B7 and RF classifier, it is important to note
that SVM and RF also demonstrated competi-
tive performance in this study. SVM achieved
an accuracy of 95.47% in this task. Therefore,
future studies could explore the use of differ-
ent feature extraction methods and classifica-
tion algorithms to further improve the accura-
cy and generalizability of automated NAFLD
grading systems.

In this study, EfficientNet-B7 with 66 mil-
lion parameters achieved the best results
among the powerful pretrained CNN mod-
els. The EfficientNet-B7 model generally has
higher accuracy and performance than other
pretrained CNN models. The main idea be-
hind EfficientNet is a hybrid scaling method

that uniformly scales the base network based
on three factors: network depth (number of
layers), network width (number of nodes per
layer), and image resolution (input image size)
[27]. The main block of this network includes
MBConv, to which squeeze-and-excitation op-
timization has been added. MBConv is similar
to the inverted residual blocks in MobileNet-
V2. Swish, a novel activation function, is ap-
plied to each layer to preserve more informa-
tion than ReLU [26].

Among the evaluated classification methods,
the RF classifier, an ensemble learning tech-
nique, demonstrated the most superior results
and performance and can learn complex pat-
terns and perform pattern recognition and ML
for high-precision classification [36]. The RF
generates its decision using the bootstrapping
technique and achieves higher accuracy by
increasing the number of decision trees. The
final result of this classifier is the result of vot-
ing on the decision trees. RF offers a distinct
advantage in its robustness to outliers and ef-
fectiveness in handling nonlinear data.

Briefly, our study has several contributions
that distinguish it from previous studies in the
literature. Firstly, we applied a larger number
of powerful pretrained CNN models for feature
extraction and selected the 40 most relevant
features for NAFLD grading through a feature
selection process. We also evaluated multiple
classification algorithms and found that the
RF classifier achieved the best performance.
Therefore, the contribution of our study lies in
the selection and combination of specific pow-
erful pretrained CNN models and classifiers to
achieve a high level of accuracy in classifying
NAFLD disease grades from ultrasound imag-
es. In other words, we develop a novel hybrid
model based on deep transfer learning using
powerful pretrained CNN models and various
machine-learning methods. Our specific selec-
tion and combination of models is what sets
our approach apart and enables us to achieve
a remarkable accuracy of 96.83%. From an-
other point of view, we use the capabilities
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of powerful deep learning methods as well as
traditional ML methods simultaneously. This
approach offers several benefits and enhances
the model’s accuracy. Finally, we conducted a
thorough comparison with other state-of-the-
art approaches in recent years in terms of ac-
curacies obtained.

Due to the limited dataset size, the omni-
present challenge of overfitting necessitates a
thoughtful approach. In our study, we have ju-
diciously employed a tailored set of strategies
to combat overfitting. Data augmentation was
a key element, where we performed horizon-
tal flipping to effectively double the number
of training images, thereby introducing crucial
variability into the dataset. Another pivotal
strategy was transferring learning, wherein
we harnessed the power of pretrained CNNss.
Leveraging these models as feature extractors
enabled us to capture pertinent image features
that are highly relevant to our specific task,
effectively mitigating overfitting by leverag-
ing the rich representations they had already
learned from extensive datasets. In conjunc-
tion with these strategies, we also employed
feature selection using mRMR, aiding in the
identification of the most informative features
for our task. For enhanced robustness, we em-
ployed an ensemble of traditional classifiers,
including RF. This approach significantly re-
duced the risk of overfitting and contributed
to improved overall model performance due to
the ensemble’s inherent advantages.

The proposed method offers several key ad-
vantages and presents some limitations. This
approach is completely automatic without any
operators. Additionally, it can be used in ru-
ral and remote areas lacking expert radiolo-
gists. Radiologists can use this approach to
aid their diagnoses. A principal constraint in
model development stemmed from the limited
sample size inherent to medical imaging data-
sets, with only 550 images obtained from 55
subjects available for training and evaluation.
Future explorations could involve investigat-
ing alternative ensemble learning methods to

potentially broaden the method’s applicabil-
ity across diverse settings. External validation
across heterogeneous ultrasound platforms
and clinical environments would further for-
tify generalizability for widespread NAFLD
grading. Data augmentation techniques can
also be used to expand labeled training data,
curbing overfitting and enhancing model gen-
eralizability. The limitations of the present
study are listed, as follows: 1) the limited size
of the training dataset, affecting the robustness
and generalizability of our classification mod-
el and 2) all ultrasound images were acquired
using a single ultrasound machine, limiting
the applicability of results to other imaging
systems.

Conclusion

In this study, an automated diagnostic system
was developed and validated for the grading of
NAFLD in obese patients, who had undergone
bariatric surgery. The proposed system used
advanced machine learning techniques, in-
cluding a state-of-the-art EfficientNet-B7 pre-
trained CNN model, the mRMR feature selec-
tion algorithm, and an RF ensemble classifier.
Utilizing a dataset of 550 ultrasound images,
the proposed system achieved 96.83% accura-
cy in differentiating normal livers from those
with mild, moderate, or severe steatosis. The
proposed method can improve the accuracy
and accessibility of NAFLD diagnoses, par-
ticularly in regions, in which there is a short-
age of experienced medical professionals. In
subsequent research endeavors, it is needed
to explore how advanced feature extraction
methodologies, such as texture analysis and
vision transformer features, can augment the
efficacy of the proposed automated diagnostic
framework. Furthermore, the current dataset
must be completed with a large collection of
clinical data and ultrasound imagery from dif-
ferent diagnostic equipment, leading to cross-
validate the system more robustly and, im-
portantly, to speed up its adoption in clinical
practice with more empirical evidence.
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