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Introduction

Cardiovascular disorders, encompassing a spectrum of heart and 
blood vessel conditions, remain a leading cause of global mor-
bidity and mortality. Efficient and accurate diagnosis is para-

mount for timely intervention and improved patient outcomes [1].  

Original

ABSTRACT
Background: Cardiovascular Diseases (CVD) requires precise and efficient diag-
nostic tools. The manual analysis of Electrocardiograms (ECGs) is labor-intensive, 
necessitating the development of automated methods to enhance diagnostic accuracy 
and efficiency. 
Objective: This research aimed to develop an automated ECG classification us-
ing Continuous Wavelet Transform (CWT) and Deep Convolutional Neural Network 
(DCNN), and transform 1D ECG signals into 2D spectrograms using CWT and train a 
DCNN to accurately detect abnormalities associated with CVD. The DCNN is trained 
on datasets from PhysioNet and the MIT-BIH arrhythmia dataset. The integrated CWT 
and DCNN enable simultaneous classification of multiple ECG abnormalities along-
side normal signals.
Material and Methods: This analytical observational research employed CWT 
to generate spectrograms from 1D ECG signals, as input to a DCNN trained on di-
verse datasets. The model is evaluated using performance metrics, such as precision,  
specificity, recall, overall accuracy, and F1-score. 
Results: The proposed algorithm demonstrates remarkable performance metrics 
with a precision of 100% for normal signals, an average specificity of 100%, an aver-
age recall of 97.65%, an average overall accuracy of 98.67%, and an average F1-score 
of 98.81%. This model achieves an approximate average overall accuracy of 98.67%, 
highlighting its effectiveness in detecting CVD.  
Conclusion: The integration of CWT and DCNN in ECG classification improves 
accuracy and classification capabilities, addressing the challenges with manual analy-
sis. This algorithm can reduce misdiagnoses in primary care and enhance efficiency 
in larger medical institutions. By contributing to automated diagnostic tools for car-
diovascular disorders, it can significantly improve healthcare practices in the field of 
CVD detection.
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Electrocardiogram (ECG) signals, capturing 
the intricate electrical activity of the heart, 
serve as invaluable sources of information 
for cardiovascular health assessment [2]. The 
analysis of ECG signals involves identifying 
patterns such as P (The P wave), QRS (the Q, 
R, and S waves), and T (The T wave represents 
ventricular repolarization, which is the recov-
ery of the ventricles back to their resting state 
after contraction) waves, which are indicative 
of various cardiac conditions [1-3]. The manu-
al analysis of ECG signals is a labor-intensive 
process prone to subjectivity and variability. 

With the advent of data mining, cloud com-
puting, and advanced machine learning tech-
niques, there is a tremendous opportunity to 
revolutionize the diagnosis of cardiovascular 
disorders [4]. The integration of Continuous 
Wavelet Transform (CWT) and Deep Convo-
lutional Neural Network (DCNN) has emerged 
as a promising approach [5]. The CWT serves 
as a powerful tool for exploring signals across 
multiple scales, leading to the extraction of in-
tricate patterns from ECG signals [5]. When 
combined with the capabilities of Deep Con-
volutional Neural Networks, which excel at 
learning hierarchical representations, this in-
tegrated approach can automate and improve 
the classification of cardiovascular disorders 
with unparalleled accuracy [6].

The CWT and DCNN were synergistically 
combined to analyze 1D ECG signals [7]. 
By transforming ECG signals into 2D spec-
trograms using CWT and training DCNN on 
these images, the method can accurately de-
tect and classify cardiovascular disorders to 
overcome the limitations of manual analysis 
and provides a reliable and automated solution 
[8] by utilizing datasets from PhysioNet and 
the MIT-BIH arrhythmia dataset [9].

The integration of CWT and DCNN not only 
accelerates and automates ECG signal analy-
sis but also represents a significant advance-
ment in healthcare [10], which can reduce the 
time and effort required for interpreting ECG 
data, allowing healthcare professionals to  

focus more on patient care. Additionally, the 
model’s ability to learn intricate patterns and 
subtle features can help mitigate misdiagnos-
es, leading to a more objective and consistent 
evaluation of cardiovascular health [11]. This, 
in turn, contributes to elevated patient care 
standards by enabling early intervention and 
tailored treatment strategies [12].

Furthermore, this research signifies the prog-
ress of healthcare practices towards data-driv-
en solutions. As digital innovations become 
increasingly important in healthcare, this study 
serves as a pioneering effort that addresses the 
challenges of cardiovascular diagnostics and 
sets the stage for a more efficient, accurate, 
and patient-centric healthcare paradigm.

In the last twenty years, there has been sub-
stantial progress in the automatic ECG classi-
fication techniques, contributing significantly 
to the improvement of cardiovascular disease 
diagnosis and treatment. Wang et al. [11] fo-
cused on arrhythmia detection using CWT and 
CNN techniques to evaluate the MIT-BIH ar-
rhythmia database and improve classification 
accuracy by decomposing signals with CWT 
and extracting features with CNN. However, 
the use of the MIT-BIH arrhythmia database 
and the data division approach by Chazal et al. 
[12] for evaluation underscored their method’s 
potential. By utilizing CWT for signal decom-
position and CNN for feature extraction, the 
study aimed to improve classification accu-
racy. Zhao et al. [13] enhanced wearable ECG 
monitoring by introducing a noise rejection 
technique using Modified Frequency Slice 
Wavelet Transform (MFSWT) and CNN, 
showcasing commendable classification accu-
racy. Acharya et al. [14] anticipated a CNN-
based algorithm for automating the detection 
of normal and Myocardial Infarction (MI) 
ECG beats, for remarkable accuracies. 

Despite the advancements in ECG analysis, 
there are still limitations, such as the focus on 
morphological features and potential concerns 
regarding adaptability. To tackle these is-
sues, this study introduces an automated ECG  
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classification method that integrates CWT and 
DCNN [15]. 

To address the limitations of focusing sole-
ly on morphological features, the proposed 
method incorporates CWT and DCNN for hi-
erarchical analysis of longer ECG fragments 
[15]. By generating 2D Scalogram images, 
the method aimed to improve the differentia-
tion between Normal Sinus Rhythm (NSR), 
Arrhythmia (ARR), and Congestive Heart 
Failure (CHF) signals, ultimately enhancing 
detection accuracy [16]. By building upon 
previous studies, this methodology offers a 
comprehensive solution to advance the pre-
cision and generalizability of ECG-based  
disease estimation models.

Material and Methods
This analytical observational research pro-

vides a comprehensive overview of the meth-
odology and procedures to implement a new 
approach for addressing a research question 
or hypothesis. Specifically, their focus is on 
developing and evaluating an automated ECG 
classification process using the integration of 
CWT and DCNN.

The Division of Dataset and Data-
base Processing

This study is conducted on the freely avail-
able open-source MIT-BIH dataset, collected 
from PhysioNet, consisting of 180 signal re-
cords, approximately 95 of them collected 
before 2000 and the remaining 85 collected 
between 2000 and 2005. Each ECG signal 
has a duration of 30 minutes. A sampling  

frequency ranging from 128 to 1000 Hz was 
used to analyze the data, which helps as a 
valued source for our research, leading to the 
evaluation of the proposed approach for ECG 
signal analysis and classification.

In the data pre-processing stage for the giv-
en problem, the database level was started, in 
which each record consists of 54,330 samples 
or data points. To prepare the database for 
training a convolutional neural network, spe-
cifically AlexNet in our case, each record was 
divided into smaller signals of a length of 500 
samples to expand the scope of the database.

A total of 30 recordings from each category 
was selected to ensure an equal distribution 
among the different types (ARR, CHF, and 
NSR), each of these recordings is further di-
vided into 12 smaller segments, each contain-
ing 500 samples. As a result, each category 
contributed a total of 180 (30×12) recordings 
that each recording had a size of 500 samples. 
Consequently, the overall dataset consisted of 
1,050 recordings in total.

By performing this pre-processing step, the 
size and balance of the dataset, which provides 
a solid foundation for training the convolu-
tional neural network was enhanced, facili-
tating accurate classification of the different 
ECG signal categories.

Proposed Workflow
The proposed workflow for ECG signal clas-

sification using CWT has been incorporated to 
enhance the clarity of our study methodology 
(Figure 1). This visual representation aimed to 
elucidate the key steps in the process of ECG 

Figure 1: The proposed workflow for ECG (electrocardiogram) signal classification using CWT 
(Continuous Wavelet Transform).
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signal classification. Commencing with the 
raw ECG signals as input data, the diagram 
outlined the pivotal role of the CWT in trans-
forming signals into two-dimensional spectro-
gram images.

Following this transformation, the prepro-
cessed spectrogram images served as inputs to 
the DCNN. This neural link is intended to learn 
and excerpt essential topographies for the sub-
sequent classification task. The culmination 
of this process is reflected in the classification 
results, which determine whether the ECG 
signals are categorized as NSR, ARR, or CHF 
[9-10]. By integrating this block diagram into 
our methodological framework, readers were 
provided with a visual roadmap that enhances 
their understanding of the sequential stages in-
volved in our proposed ECG signal classifica-
tion methodology. This visual representation 
serves as a valuable tool for readers to grasp 
the step-by-step process and gain a compre-
hensive comprehension of how accurate clas-
sification of ECG signals was achieved.

ECG Signal
ECG signal is a visual depiction of the 

heart’s electrical activity throughout a pe-
riod. Frequently utilized in the diagnosis of 
diverse heart conditions, the ECG signal is 
acquired by positioning electrodes on the skin 
[8]. These electrodes detect electrical altera-
tions in the heart, generating a waveform that 
mirrors the heart’s functioning. Subsequently, 
this signal undergoes processing and analy-
sis to recognize patterns and deviations that 
could signify cardiovascular disorders [3]. In 
recent decades, many methods have been used 
to diagnose cases of ECG, leading to the ob-
servation and recording of electrical activities 
during heart operations using leads located 
around the heart [11]. The study’s adoption of 
a one-dimensional representation for ECG sig-
nals is a strategic decision driven by multiple 
considerations. By simplifying the data struc-
ture to a single dimension, the computational 
complexity is reduced, enhancing efficiency 

in processing and training machine learning 
models [7]. This representation is in harmony 
with traditional ECG analysis methodologies, 
particularly in capturing the essential compo-
nents, such as P, QRS, and T waves, which 
were inherently manifested as one-dimension-
al features [3]. Moreover, one-dimensional 
signals are well-suited for established signal 
processing techniques, facilitating feature ex-
traction and analysis in time and frequency 
domains. 

One-dimensional signal simplicity aligns 
with utilization of deep learning replicas, 
mainly CNNs, designed for processing one-
dimensional data. The one-dimensional rep-
resentation consents the prototypical concen-
tration on the temporal dynamics of cardiac 
electrical activity, crucial for accurate classi-
fication, and also harmonizes with the study’s 
integration of CWT, in which 1D ECG signals 
are converted into 2D spectrograms to com-
bine temporal and frequency information [12]. 
Accordingly, the decision to use a one-di-
mensional representation aligns well with the 
inherent characteristics of ECG signals and 
enables effective processing and analysis in 
the proposed study. The division of the ECG 
signal into time segments provides a concise 
summary of the durations and features, which 
aid in ECG analysis. Among these segments, 
the interval is the longest, while the P wave 
is the shortest, contributing to ECG data in-
terpretation. The CNNs, such as DCNNs, 
are extensively utilized in biomedical signal  
processing [17,18]. 

Deep learning, which encompasses the prin-
ciples of neuroscience, statistics, arithme-
tic, and physics, enables computers to learn 
from data and make intelligent decisions (s). 
DCNNs, a type of deep learning algorithm, 
can directly process ECG data as a 1D vec-
tor without the need for preprocessing or fea-
ture selection. However, since DCNNs are 
typically designed to process image data, the 
proposed approach transforms the ECG data 
into a 2D representation to achieve higher  
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accuracy [19]. Doctors can detect individuals 
with cardiac arrhythmia and cardiovascular 
disorders by examining ECG records. Addi-
tionally, the analysis of specific signal features 
plays a crucial role in diagnosing heart activi-
ties; this signal depicts the electric activity of 
the heart during a specific timeframe. The ECG 
signal comprises distinct elements, including 
the P wave, QRS complex, and T wave, of-
fering valuable insights into the heart’s perfor-
mance. In the second segment, the 2D ampli-
tude spectrogram of the ECG signal is evident, 
representing the signal’s frequency distribu-
tion over time and providing a detailed depic-
tion of how various frequency components 
contribute to the overall ECG waveform. The 
2D spectrogram helps recognize different pat-
terns and abnormalities within the ECG sig-
nal. By analyzing the spectrogram, healthcare 
professionals can gain insights into the specif-
ic frequencies and their variations that may in-
dicate certain cardiac conditions or disorders, 
leading to the accurate diagnosis and monitor-
ing of cardiovascular health.

Continuous Wavelet Transform
CWT, a mathematical technique, enables 

an overcomplete representation of a signal 
by continuously adjusting the translation 
and scale parameters of the wavelets. In this 
study, the CWT was implemented on the ECG  
signal, transforming it into the time-frequency 
domain to facilitate the extraction of pertinent 
features [11]. The CWT is a commonly used 
technique for time-frequency analysis, which 
decomposes a signal into its time-frequency 
components using a set of wavelet functions. 
It builds upon the concept of the Short-time 
Fourier Transform (STFT) and provides sev-
eral advantages. The CWT offers improved 
time resolution and reduced frequency resolu-
tion for higher frequencies, while also provid-
ing enhanced frequency resolution and dimin-
ished time resolution for lower frequencies. 
These benefits are achieved by manipulating 
scale and translation parameters [20].

Formally, for a given signal x(t), the CWT 
can be defined as follows:

( ) ( )1 .a
t bC b x t dt

aa
ϕ

∞

−∞

− =  
 ∫                 (1)

Where Ca(b) is the CWT coefficients C(a, b), 
a is the values of the scale parameter, b is the 
position parameter, and x(t) is the set feet coef-
ficients and t is the time.

The use of the CWT can lead to obtaining a 
detailed time-frequency illustration of the ECG 
signal, for more accurate feature extraction 
and analysis. Additionally, CWT helps gain in-
sights into the different frequency components 
in the signal and their variations over time. In 
this case, CWT is a mathematical tool used in 
signal processing, including the analysis of 
ECG signals. It allows us to gain insights into 
the different frequency components present in 
the signal and how these frequencies vary over 
time. After applying the CWT to the raw ECG 
signal, a visual representation was obtained in 
the form of an image (Figure 2(a)), depicting 
the amplitude and scaling values in relation to 
the variation of time (s). In this research, dis-
similar scale parameters of CWT were used to 
convert the one-dimensional (1D) representa-
tion of the raw ECG heartbeat signal into a 
two-dimensional (2D) spectrogram, represent-
ed as an Analytical Morlet waveform signal 
image. The CWT causes us to attain the wave-
let factors of the Analytical Morlet wavelet at 
multiple scales, resulting in a 2D spectrogram 
of the ECG signal in the time-frequency field. 
The Analytical Morlet wavelet is known for its 
excellent time-frequency localization proper-
ties, effectively balancing time and frequency 
resolution. This characteristic makes it partic-
ularly suitable for analyzing signals that con-
tain localized oscillatory components, which 
are commonly found in ECG signals [21]. 
Figure 2(b) illustrates the time-domain ECG 
heartbeat signal and the spectrogram of both 
a typical and an anomalous heartbeat. These 
signals are sampled at frequencies ranging 
from 128 to 1000 Hz, with a sampling interval 
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of 0.002. The CWT is applied to analyze these 
1D signals and extract pertinent information. 
By employing the CWT and representing the 
ECG signal in the time-frequency domain, a 
deeper understanding of the signal’s charac-
teristics and temporal variations is attained.

This causes the exploration of localized os-
cillatory components and facilitates the iden-
tification of abnormalities within the ECG 
signal, resulting in contributing to the di-
agnosis and analysis of cardiovascular con-
ditions with valuable insights for medical 
practitioners. The CWT coefficients are used 
to construct Scalograms, which depict the 
time-frequency characteristics of the signals. 
These Scalograms are visualized using the 
“jet” colormap and transformed into images 
and then classified into “Normal” and “Ab-
normal” categories based on the signal clas-
sification. To prepare the Scalogram images 
for input into a modified ResNet-50 DCNN 
model, they undergo resizing to a standardized 
size of 224×224 pixels. The resulting 150 2D 
Scalogram images are subsequently fed into 
the modified ResNet-50 DCNN model. The 
primary objective of this analysis is to lever-
age deep learning techniques to identify pat-
terns or abnormalities in the ECG signals. By  

employing the modified ResNet-50 DCNN 
model and analyzing the Scalogram images, 
the current study aimed to detect and classify 
potential abnormalities in the ECG signals. 
This approach combines the power of deep 
learning with the time-frequency representa-
tion provided by the CWT to improve the pre-
cision and use of ECG signal analysis.

Deep Convolutional Neural Network
Deep learning, a subset of machine learning, 

focuses on developing artificial intelligence 
systems that can learn from large datasets. It 
relies on Artificial Neural Networks (ANNs), 
which are designed to mimic the structure and 
functionality of the human brain. Within the 
realm of deep learning, DCNNs have gained 
significant prominence for their ability to rec-
ognize patterns in images and videos. DCNNs 
are specifically designed to leverage the three-
dimensional neural patterns observed in the 
visual cortex of animals. As a result, DCNNs 
are widely applied in various domains, in-
cluding image classification, recommendation 
systems, and object detection [22]. Moreover, 
they are also effective in creating recommen-
dation systems for natural language process-
ing tasks. In the DCNN structure depicted in 

Figure 2: Electrocardiography signal & 2D spectrogram (a) One Dimensional and (b) Visualization 
[227×227].
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Figure 3, the initial layer is the “image input 
layer”, designed to receive input images with 
dimensions of 224×224 pixels and three-color 
channels (RGB). Following that, a “convo-
lution2dLayer” is applied, performing a 2D 
convolution operation on the input with a 7×7 
filter size and 64 filters as well as a stride of 2, 
resulting in a reduction of the feature map di-
mensions. Padding is applied to ensure that the 
output size matches the input. After the con-
volutional layer, a “batch normalization layer” 
is utilized to standardize the output begin-
nings by adjusting and scaling them, helping 
stabilize the learning process and accelerate 
convergence. A “reluLayer” follows, apply-
ing the rectified linear unit (ReLU) beginning 
function, such as a convolutional layer, batch 
normalization layer, and ReLU Layer. ReLU 
circles damaging morals to zero while con-
serving positive morals, introducing non-lin-
earity, and enhancing the network’s capability 
to study multifaceted patterns.

Next, a “maxPooling2dLayer” is introduced 
to perform max pooling, which decreases the 
spatial sizes of the feature maps with a 3×3 
pool size, a stride of 2, and padding when nec-
essary. The network continues with another 
“convolution2dLayer” that employs 1×1 filter 
with 256 filters. The architecture explores ab-
stract and higher-level features through con-
volutional, batch normalization, and ReLU 
layers. These layers are repeated with varia-
tions in filter sizes to capture local features. 
The branches are merged using additional lay-
ers, and this pattern is repeated multiple times. 

A final addition layer merges the branches, 
surveyed by a ReLU activation layer. The 
output is then passed through a series of lay-
ers, including a max pooling layer, resulting 
in an output size of 112×112×64. The outputs 
of the branches are added together, creating 
an output size of 112×112×320; this process 
is repeated for three residual blocks, and the 
output of the 3rd block is conceded through a 
global average pooling layer, resulting in an 
output size of 1×1×2048. The output is then 
connected to a completely related layer with 
1000 outputs, shadowed by a softmax activa-
tion layer for final cataloging probabilities.

The Parameters of our DCNN Archi-
tecture

A typical DCNN comprises multiple layers, 
with particular emphasis on the convolution 
layer, which is critical as it applies filters or 
kernels—sets of weights—to extract pertinent 
features from the input data. By incorporat-
ing additional convolution layers, the DCNN 
becomes adept at capturing higher-level fea-
tures. An overview of the learning parameters 
was employed in our DCNN architecture, as 
depicted in Table 1. These parameters play a 
vital role in determining the network’s per-
formance and effectiveness by governing its 
learning process and weight adjustments dur-
ing training. One such crucial parameter is the 
learning rate, which determines the magni-
tude of weight updates and impacts the con-
vergence speed. A higher learning rate can 
accelerate convergence but carries the risk of  

Figure 3: Learning process of our proposed deep convolutional neural network architecture.
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overshooting the optimal solution, whereas a 
lower rate may result in slower convergence 
but improved accuracy. The optimization al-
gorithm is another important parameter that 
determines how the network’s weights are up-
dated using calculated gradients during train-
ing. Popular options include Stochastic Gra-
dient Descent (SGD), Adam, and RMSprop. 
Each algorithm has distinct advantages, and 
their performance can vary based on the spe-
cific problem and dataset. The selection of 
the appropriate values for these parameters is 
essential to achieve optimal network perfor-
mance, often requiring careful experimenta-
tion and tuning to strike the right balance be-
tween convergence speed and accuracy for a 
given task.

Moreover, regularization techniques are 
employed to counter overfitting, in which the 
network becomes overly tailored to the train-
ing data and performs poorly on unseen data. 
Common regularization methods encompass 
L1 and L2 regularization, dropout, and batch 
normalization. DCNN techniques help man-
age the network’s complexity and enhance 
generalization. Additionally, the batch size 
denotes the number of training examples 
processed in a single forward and backward 
pass during each training iteration, influenc-
ing training speed and memory requirements. 
A higher batch size can expedite the training 
process but might demand increased memory 
resources. An epoch signifies a full iteration 

through the entire training dataset. The selec-
tion of the number of epochs dictates how fre-
quently the network undergoes training on the 
complete dataset. Striking a suitable balance is 
crucial to prevent overfitting or underfitting of 
the data. Therefore, the initial values assigned 
to the weights of the network can greatly  
impact training performance.

Different weight initialization techniques, 
such as random initialization, Xavier initial-
ization, or His initialization can be used to en-
sure that the network starts with suitable initial 
weights. These learning parameters are care-
fully selected and fine-tuned to improve the 
training method with the maximum possible 
performance for the specific task and dataset. 
Experimentation and evaluation of different 
parameter configurations are often performed 
to find the optimal settings for the DCNN  
architecture.

Results
In the planned process, the training of the 

DCNN is a pivotal stage for accurate ECG 
signal classification in cardiovascular dis-
orders. Initializing the DCNN with random 
weights and biases sets the foundation for its 
learning process. By utilizing diverse datasets 
containing NSR, ARR, and CHF cases from 
reputable sources such as PhysioNet and the 
MIT-BIH arrhythmia dataset, ECG signals are 
transformed using the CWT. This transforma-
tion yields two-dimensional spectrograms, 
which are then fed into a DCNN architecture. 
The DCNN is strategically designed with 
pooling layers, fully connected layers, and 
convolutional layers to hierarchically extract 
features from the spectrograms. The iterative 
training process involves presenting batches 
of ECG signal images to the DCNN, causing 
the model to compute loss and refine its pa-
rameters through backpropagation. Continu-
ous monitoring of accuracy and cross-entropy 
loss reveals an upward trend and a gradual 
reduction, respectively. The plotted curves 
in Figures 4 and 5 illustrate the training and  

Type Value
Learning rate initial value 0.0003, 0.0001, 0.003
Convolutional layer kernel size 7, 3,1
Epoch 15
Maximum Iteration 120
Iteration per epoch 8
Learning rate schedule Constant
Frequency 8

Table 1: The Learning parameters of our deep 
convolutional neural network architecture.
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Figure 4: Deep convolutional neural network training proposed method with Electrocardiogram 
(ECG) datasets.

Figure 5: Training and validation performances using proposed model accuracy curve of  
convolutional neural network.
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validation performance of the DCNN and 
CNN, respectively. In these curve plots, the 
learning curve represents the model’s perfor-
mance on the training dataset, showcasing its 
learning capability. Additionally, the valida-
tion curve, derived from the validation datas-
et, reflects the model’s generalization capabil-
ity. During the evaluation phase, a confusion 
matrix, such as a mix-up matrix, is utilized to 
provide detailed insights into the accuracy of 
the model in classifying normal and abnor-
mal heartbeats. The results obtained from this 
evaluation, as depicted in Figure 4 and sum-
marized in Table 1, demonstrate the effective-
ness of the approach in superior accuracy in 
ECG signal classification. These promising re-
sults affirm the viability of our trained DCNN 
model and highlight its potential for advanc-
ing automated diagnosis in cardiovascular 
healthcare. The model serves as a robust tool 
for early detection and intervention, contribut-
ing to improved healthcare outcomes.

Figure 4 illustrates the accuracy plot based 
on the number of iterations in the DCNN. The 
accuracy, which indicates the percentage of 
correct predictions made by the DCNN model, 
starts at a modest level of approximately 38% 
during the initial iterations. However, as the 
number of iterations increases, the accuracy 
shows a significant upward trend, reaching a 
promising level of 98.7% after 600 iterations 
during the 8th epoch. This improvement in ac-
curacy is a direct result of training the DCNN 
model with a larger set of scalogram images. 
With more extensive training, the model be-
comes more proficient in classifying images, 
leading to enhanced accuracy.

The deep learning model, focused on ECG 
images, underwent both training and valida-
tion processes, with accuracy and cross-entro-
py loss plotted against the training steps. The 
red line represents the training process, indi-
cating how the model’s performance improves 
over time. The black line corresponds to the 
validation process, demonstrating how well 
the model generalizes to new, unseen data. 

Evaluation involves examining the model’s 
performance using a confusion matrix, which 
provides insights into the accuracy of the clas-
sification. By analyzing the confusion matrix, 
a deeper understanding of the model’s abil-
ity was attained to correctly classify different 
classes or categories within the ECG signals.

However, the loss plot reveals an inverse pat-
tern compared to the accuracy plot. The loss, 
indicative of the error or disparity between 
predicted and actual values, commences with 
a higher rate during initial iterations, indicat-
ing a significant difference between predicted 
and actual values (Figure 5). However, as the 
number of iterations increases during training, 
the loss gradually diminishes, signifying that 
the CNN model is improving in accuracy.

Table 1 presents a comparative analysis 
between the proposed method, utilizing the 
CWT and DCNN for feature extraction from 
ECG signals, and three state-of-the-art ap-
proaches. Table 1 highlights the superior ac-
curacy of our approach, with an average ac-
curacy of 98.67%, outperforming the other 
techniques. To comprehensively evaluate the 
method’s performance, five commonly used 
metrics—overall accuracy, specificity, pre-
cision, F1-score, and recall—are employed. 
These metrics consider False Positive (FP), 
True Negative (TN), True Positive (TP), and 
False Negative (FN) values obtained from 
classifying normal and abnormal heartbeats. 
Focusing on the imbalanced heartbeat types, 
the F1-score is emphasized as a key metric, 
considering both positive predictive value and 
sensitivity. Figures 4 and 5, along with the sta-
tistical measures, collectively demonstrate the 
improvement in the CNN model’s classifica-
tion capabilities during training, emphasizing 
the model’s capability to correctly calculate 
and reduce error rates over time.

Figure 6 illustrates the confusion matrix, 
in which two main classes are depicted: the 
output class and the target class. Each class 
further consists of normal and abnormal  
subclasses. The green region represents the 
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true values, encompassing both TP and TN, 
while the red region represents the instances 
classified incorrectly, comprising FP and FN. 
The remaining portion represents the cross-
validation or validation of our classes, provid-
ing a comprehensive view of the classification 
outcomes. Figure 6 displays the confusion ma-
trix that summarizes the classification results 
in this study. The matrix represents the clas-
sification outcomes for three classes: ARR, 
CHF, and NSR.

In the case of the ARR class, 50 out of 100 
instances were accurately classified as ARR, 
resulting in a 50% accuracy rate. However, the 

classifier misinterpreted two instances of ARR 
as NSR. For the NSR class, the CNN model 
correctly identified 50 out of 100 instances, 
yielding a success rate of 50%. Notably, the 
results for NSR were highly promising, with 
the classifier correctly identifying all 100 in-
stances as ARR. The overall average success 
rate of the model in this study stands at 50%, 
reflecting the combined accuracy across all 
classes. This underscores the effectiveness 
of the model in accurately classifying ECG 
signals and distinguishing between different 
heartbeat patterns.

Figure 7 visually demonstrates the model’s 

Figure 6: Confusion matrix cross-validation

Figure 7: Normal and abnormal classification

Wavelet-CNN Fusion for ECG Classification.
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ability to detect both normal and abnormal 
classes by emphasizing specific segments of 
the 2D image representing an ECG signal. 
The image serves as a visual testament to the 
model’s proficiency in accurately identifying 
and classifying ECG signals. The deep learn-
ing model underwent rigorous training and 
validation processes utilizing ECG images, 
reinforcing its capacity for precise distinctions 
between different cardiac conditions. To eval-
uate the model’s performance, accuracy, and 
cross-entropy loss were measured and plotted 
against the training steps. The red line repre-
sents the training process, while the black line 
represents the validation process. These plots 
illustrate the progression and enhancement 
of the model’s accuracy and loss through-
out the training. In the evaluation phase, the 
performance indicators were determined us-
ing a confusion matrix, offering insights into 
the accuracy of the model’s predictions. This 
matrix helps assess how well the model clas-
sifies ECG signals into their respective class-
es—normal or abnormal. The accuracy metric 
derived from the confusion matrix provides a 
quantitative measure of the model’s perfor-
mance.

Overall, the evaluation process provides evi-
dence of the effectiveness of our deep learning 
model in accurately classifying ECG signals 
and detecting normal and abnormal classes. 
Table 1 presents a comparison between three 
state-of-the-art approaches and the proposed 
research method, clearly demonstrating the 
superior accuracy of the approach. The pro-
posed method focuses on extracting features 
from ECG signals using the CWT and DCNN, 

resulting in an impressive average accuracy of 
98.67% for classifying ECG signals.

Furthermore, the proposed method, lever-
aging the DCNN, yields promising results in 
terms of accuracy, sensitivity, and specificity. 
Accuracy reflects the overall correctness of 
the model’s predictions, and sensitivity indi-
cates its ability to correctly identify positive 
cases, and specificity represents its accuracy 
in identifying negative cases. Table 2 provides 
a comprehensive comparison of evaluation 
metrics across three different models: the Pro-
posed Method (DCNN), 1-D CNN, and CNN 
using AlexNet. Notably, the DCNN achieves 
the highest accuracy of 98.67%, followed 
closely by CNN using AlexNet with 95.31%, 
while 1-D CNN lags behind at 89.40%, high-
lighting the superior overall correct classifica-
tion rate of the DCNN.

In terms of sensitivity, the Proposed Meth-
od (DCNN) excelled with a rate of 97.25%, 
showcasing its capability to accurately iden-
tify positive cases. CNN using AlexNet fol-
lowed with 94.21% and 1-D CNN exhibited 
a lower sensitivity at 68.80%. The Proposed 
Method (DCNN) also outperformed in speci-
ficity, with the highest rate at 99.89%. In 
comparison, 1-D CNN achieved 99.50%, and 
CNN using AlexNet demonstrated a speci-
ficity of 93.26%, emphasizing on the supe-
rior ability of the DCNN to correctly iden-
tify negative cases. The results highlight 
significant advancements with the DCNN when  
compared to previous studies utilizing 1-D 
CNN and CNN with AlexNet. The improve-
ments in accuracy, sensitivity, and specificity 
underscore the superior overall performance 

Model Accuracy (%) Sensitivity (%) Specificity (%)
Proposed Method (DCNN) 98.67 97.25 100

1-DCNN [23] 89.40 68.80 99.50
CNN using AlexNet [24] 95.31 94.21 93.26

DCNN: Deep Convolutional Neural Network, CNN: Convolutional Neural Network

Table 2: Evaluation Metrics Comparison
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of the DCNN, affirming its efficacy in cor-
rectly classifying both positive and negative 
cases.

Comparisons 
Wang et al. [11] focused on arrhythmia de-

tection using a combination of CWT and CNN 
techniques, resulting in improved classifica-
tion accuracy. However, the present study in-
troduced a modified algorithm that integrates 
DCNNs with the CWT. This novel approach 
capitalizes on the strengths of both methods, 
leading to remarkable outcomes in the classi-
fication of ECG signals.

In this study, a modified algorithm was pro-
posed that combines DCNNs with the CWT. 
This innovative approach has yielded impres-
sive results in the classification of ECG sig-
nals, as demonstrated by the evaluation met-
rics. The average precision, specificity, recall, 
overall accuracy, and F1-score values have 
reached exceptional levels of 100%, 100%, 
97.65%, 98.67%, and 98.81%, respectively. 
These results surpass those achieved by most 
existing algorithms, as illustrated in Table 3.

The utilization of DCNNs in conjunction 
with CWT proves highly effective in accu-
rately classifying ECG signals. The proposed 
algorithm consistently outperforms previ-
ous methods, underscoring its superiority in 
terms of precision, specificity, recall, overall  

accuracy, and F1-score. These findings not 
only demonstrate the potential of the modi-
fied algorithm for enhancing the diagnosis and 
analysis of ECG data but also highlight its ex-
ceptional performance compared to state-of-
the-art techniques. Acharya et al. [14] antici-
pated a CNN-based algorithm for automating 
the detection of normal and MI ECG beats, 
with remarkable accuracies. Despite their 
success in specific beat detection, the cur-
rent study surpasses this focus by presenting 
an automated ECG classification method that 
integrates DCNNs and CWT. The proposed 
methodology analyzes longer ECG signal 
fragments with a hierarchical architecture for 
effective differentiation between NSR, ARR, 
and CHF signals. This broader classification 
scope contributes to a more comprehensive 
understanding of cardiovascular health.

Although previous comparative studies have 
made significant contributions to ECG signal 
analysis, the current research stands out due 
to its unique integration of DCNNs and CWT. 
This integration provides a more comprehen-
sive and robust solution for accurately clas-
sifying a wide range of cardiovascular disor-
ders. Furthermore, the research distinguishes 
itself by focusing on longer signal fragments 
and generating 2D Scalogram images. These 
approaches further enhance the effectiveness 
and applicability of our study, positioning it as 

Ref. Feature Extraction Classification Accuracy (%)

[4]    Principal Component Analysis + Wavelet   Support Vector Machine 86.4
[5]    Gibbs Sampling Algorithm   Hidden Markov Model 88.33
[6]    Wavelet   Probabilistic Neural Network 92.7
[7]    Convolutional neural network Model   SoftMax 92.7
[8]    Discrete Wavelet   Neural Network Wavelet 94
[9]    Rescaled Raw Data   1D- Deep convolutional neural network 95.20

[10]    Convolution   Convolutional neural network Model 97.24
Proposed    Continuous Wavelet Transform   Deep convolutional neural network Model 98.67

Table 3: Contrast with other prevalent methods
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a significant contribution to the field of ECG 
signal analysis.

Discussion
The current study introduces a novel ap-

proach to ECG signal classification, leverag-
ing the integration of the CWT and DCNN. 
This methodology demonstrates significant 
advancements over existing approaches, par-
ticularly in handling imbalanced heartbeat 
types. The proposed algorithm exhibits out-
standing performance across multiple evalua-
tion metrics, including overall accuracy, spec-
ificity, precision, F1-score, and recall. These 
metrics provide a comprehensive assessment 
of classification results, with the F1 score, 
emphasized due to the imbalanced nature of 
heartbeat types.

The proposed methodology excels in the de-
tection of arrhythmia when compared to other 
methods, showcasing its robustness and effec-
tiveness. The achieved results align favorably 
with the current state-of-the-art, demonstrat-
ing comparability with various deep-learning 
approaches applied to the same database.

A pretrained EfficientNet B0 convolutional 
neural network model achieved a commend-
able classification accuracy of 97.3% on the 
PhysioNet dataset. Another investigation 
[24] utilizing a hybrid deep learning model 
achieved a classification accuracy of 97.15% 
in identifying arrhythmia in the PhysioNet 
MIT-BIH arrhythmia database [25]. Addi-
tionally, Daydulo et al. [25] proposed a deep 
learning convolutional neural network for 
ECG signal classification from the MIT-BIH 
Arrhythmia database, reporting a classifica-
tion accuracy of 91.92% [25]. Furthermore, 
a hybrid deep learning model named CNN—
LSTM achieved accuracies of 98.0%, 96.0%, 
and 98.0% for ARR, CHF, and NSR, respec-
tively [23].

Therefore, the present study not only in-
troduces a powerful tool for automated ECG  
signal classification but also establishes its  
efficacy through comprehensive evaluation 

metrics. The proposed algorithm holds prom-
ise for revolutionizing cardiovascular diag-
nostics, offering accurate and automated iden-
tification of various cardiac conditions. Future 
research could focus on further refining the al-
gorithm and conducting real-world validation 
to enhance its applicability in diverse health-
care settings.

Conclusion
The current study presents an innovative 

method for ECG classification that merges the 
CWT and DCNNs in order to overcome chal-
lenges associated with the loss of signal in-
formation in different frequency components 
of ECG heartbeats. The proposed approach 
initiates by applying CWT to transform ECG 
signals into the time-frequency domain, fa-
cilitating the capture of signal characteristics 
across diverse frequencies. Subsequently, 
DCNNs are employed to extract features from 
the spectrogram generated by the decomposed 
time-frequency components. By capitalizing 
on the capabilities of CWT in multidimen-
sional signal processing and DCNNs in im-
age recognition, the proposed method aimed 
to enhance the accuracy of ECG classification. 
To assess the effectiveness of this approach, 
extensive experiments were conducted using 
the MIT-BIH database. A comparison with 
existing methods was performed using a con-
fusion matrix. Through cross-validation, the 
modified algorithm, which combines DCNNs 
and CWT, achieved remarkable average val-
ues: 100% for average precision and average 
specificity, 100% for average recall, 98.67% 
for average overall accuracy, and 98.81% for 
average F1-score. The high accuracy in ECG 
classification demonstrates the potential of the 
proposed method as a valuable clinical auxil-
iary diagnostic tool. Early detection of arrhyth-
mia, a major contributor to cardiovascular  
disease, plays a crucial role in effective treat-
ment and prevention. The proposed method 
offers the opportunity for timely identification 
and intervention, such as employing vagal  
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maneuvers or medications, to reduce arrhyth-
mia and mitigate the risks associated with 
cardiovascular disease. Moreover, this study 
recognizes the challenges associated with  
labeling ECG heartbeats, which can be both 
costly and time-consuming.

Future research can explore the utilization 
of unsupervised learning techniques, such as 
autoencoders, to enhance the performance of 
the classification task in a more cost-effective 
manner.
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