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Introduction

Gastrointestinal (GI) tract diseases stand as a predominant con-
tributor to fatal cancers globally, characterized by elevated mor-
tality and incidence rates [1]. The advent of Capsule Endoscopy 

(CE) [2] has caused a transformative shift in diagnosing Small Bowel 

Original

ABSTRACT
Background: Wireless Capsule Endoscopy (WCE) is the gold standard for painless 
and sedation-free visualization of the Gastrointestinal (GI) tract. However, review-
ing WCE video files, which often exceed 60,000 frames, can be labor-intensive and 
may result in overlooking critical frames. A proficient diagnostic system should offer 
gastroenterologists high sensitivity and Negative Predictive Value (NPV) to enhance 
diagnostic accuracy. 
Objective: The current study aimed to establish a reliable expert diagnostic sys-
tem using a hybrid classification approach, acknowledging the limitations of individ-
ual deep learning models in accurately classifying prevalent GI lesions. Introducing a 
hybrid classification framework, ensemble learning techniques were applied to Deep 
Convolutional Neural Networks (DCNNs) tailored for WCE frame analysis.
Material and Methods: In this analytical study, DCNN models were trained on 
balanced and unbalanced datasets and then applied for classification. A model scoring 
hybrid classification approach was used to create meta-learners from the DCNN clas-
sifiers. Class scoring was utilized to refine decision boundaries for each class within 
the hybrid classifiers. 
Results: The VG_BFCG model, constructed on a pre-trained VGG16, demon-
strated robust classification performance, achieving a recall of 0.952 and an NPV of 
0.977. Tuned hybrid classifiers employing class scoring outperformed model scoring 
counterparts, attaining a recall of 0.988 and an NPV of 1.00, compared to 0.979 and 
0.989, respectively.  
Conclusion: The unbalanced dataset, with a higher number of Angiectasia frames, 
enhanced the classification metrics for all models. The findings of this study un-
derscore the crucial role of class scoring in improving the classification metrics for  
multi-class hybrid classification.
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(SB) pathology. Due to recent clinical strides, 
CE has emerged as the predominant diagnos-
tic modality for SB issues, primarily attributed 
to its non-invasive nature and commendable 
outcomes [3-5]. The CE in early screenings 
can lead to saving lives [6]. The CE record-
ings yield approximately 60,000 image frames 
for 8-12 hours [7].

The CEs are recommended for detecting Ob-
scure Gastrointestinal Bleeding (OGIB), iron 
deficiency anemia, suspected Crohn’s disease, 
and other pathologies in patients, who have 
undergone upper endoscopy and colonoscopy 
[3-5]. 

The CEs have challenges and limitations, in-
cluding extended and labor-intensive review-
ing times, as well as the potential for over-
looking lesions, which are frequently reported 
as primary issues [7-11]. The review of a CE 
video file typically demands 30 to 180 min-
utes with a heightened risk of diagnostic errors 
[12]. Additionally, diagnostic software, such 
as Suspected Blood Indicators (SBI) has dem-
onstrated suboptimal performance in terms of 
sensitivity and specificity [13-16].

Multiple studies have focused on develop-
ing computer-aided diagnosis systems to ana-
lyze CE videos, with a primary emphasis on 
utilizing deep learning techniques. However, 
the focus was on detecting bleeding, subse-
quent efforts also explored the classification 
of other abnormalities, such as polyps and tu-
mors [17-20]. For instance, Tsuboi et al. [21] 
implemented a Deep Convolutional Neural 
Network (DCNN) to develop a diagnostic tool 
capable of discerning between type 1a and 1b 
small-bowel Angioectasia in CE images, with 
notable detection rates.

Hajabdollahi et al. [22] introduced a net-
work designed for the identification of mul-
tiple abnormalities utilizing a bifurcated struc-
ture with 97.5% sensitivity, 99.3% specificity, 
and 99.0% accuracy. Leenhardt et al. [23] 
achieved notable outcomes with 100% sen-
sitivity, 96% specificity, and 100% Negative 
Predictive Value (NPV) using their DCNN 

model for Angiectasia detection. However, 
important factors, such as pathology type 
and size were overlooked. In a comparison 
of deep learning architectures focusing on 
frames with normal features and frames with 
Angiodysplasia, Valeria et al. [12] discovered 
that DenseNet-161 exhibited superior per-
formance, with a precision of 94% and a re-
call of 93%. However, it is worth noting that  
preprocessing had a negative impact on the 
overall performance of DenseNet-161.

Based on deep learning techniques, erosions 
and ulcers in CE images, were identified with 
88.2% sensitivity and 90.8% specificity [24]. 
The DCNN model was also implemented 
on an augmented dataset comprising 10,000 
CE frames for automated bleeding detection 
with a sensitivity of 99.20% and precision of 
99.90% [25]. It is worth noting that the study 
[25] did not provide information regarding the 
utilization of validation data.

Fonseca et al. [26] evaluated three DCNN-
based models for classifying an imbalanced 
dataset sourced from the Kvasir-Capsule da-
tabase [27], encompassed categories, such 
as Angiectasia, Normal, Polyp, and fresh 
blood. They also grouped Angiectasia, Blood-
Fresh, and Polyp into the “not-normal” class 
and demonstrated the capacity of a DCNN 
model to categorize small segments of data 
extracted from video capsule endoscopies. 
The pre-trained ResNet50 network, in par-
ticular, achieved noteworthy results with 99%  
sensitivity and 69% specificity.

Xception was employed to classify polyps 
and lesions in a 3-class dataset comprising 
normal, P1P, and P2P with 95.9% sensitivity, 
95.7% NPV, and 97.1% specificity for each 
pair of classes [28]. 

The current research concentrates on spe-
cific abnormalities and frequently incorpo-
rates augmentation techniques. The NPV has 
not been investigated enough for the multi-
class classification of CE images. The NPV 
is considerably important for the clinical ap-
plication of DCNN models, especially when 
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combined with metrics, such as the F1-score. 
Further investigation and analysis can affect 
the improvement of the clinical utility of these  
models.

According to Saurine’s classification [29], 
vascular lesions, such as Angiectasia and An-
giodysplasia are designated as high-risk le-
sions [30], whereas inflammatory lesions are 
frequently observed in individuals with In-
flammatory Bowel Diseases (IBD) and may 
contribute to the development of colon can-
cer [31]. Given the significant implications of 
these pathologies, early detection and treat-
ment play a crucial role in reducing the risk 
of mortality in patients. Therefore, the current 
study aimed to develop a Computer-aided Di-
agnosis (CAD) system, accurately classifying 
these pathologies using advanced deep learn-
ing techniques.

A comprehensive four-class dataset, consist-
ing of Angiectasia, Inflammatory, Normal, and 
Angiodysplasia was constructed to ensure ac-
curate classification. Subsequently, an expert 
DCNN was developed and trained on this da-
taset, with color and textural patterns specific 
to high-risk pathologies. The first goal of the 
present study is to achieve high recall and a 
strong NPV, recognizing the importance of 
these metrics for physicians relying on AI-
based classifier systems.

The compilation of our dataset involved le-
veraging three public databases, enabling the 
creation of a robust DCNN model. Our perfor-
mance objectives include achieving an NPV 
greater than 0.99, an overall accuracy exceed-
ing 0.975 and recalls for each class surpass-
ing 0.95 in the context of the four-class image 
classification task.

Six models, trained on both balanced and 
unbalanced datasets, were devised to opti-
mize model performance. In the present study, 
model and class scoring approaches were 
implemented by employing ensemble learn-
ing techniques. Weights were assigned to in-
dividual models and classes, respectively, and 
determined the optimal weights through a full 

factorial experiment design. Moreover, the 
current study represents the first investigation 
to implement hybrid classification for CE im-
ages, with a particular focus on metrics such 
as NPV, overall accuracy, and recall. Based on 
the obtained results, improving model perfor-
mance could be accomplished by integrating 
both model scoring and class scoring mecha-
nisms. This integration effectively modified 
class distributions within decision boundaries, 
resulting in enhanced classification results.

Material and Methods

Dataset
This analytical study was conducted based 

on public databases. Wireless Capsule Endos-
copy (WCE) video files for individual patients 
typically comprise only a limited number of 
abnormal frames. Consequently, the annota-
tion of these frames is considered a time-in-
tensive task for gastroenterologists, leading 
to the dataset specifically focused on vascular 
lesions and inflammatory lesions, which were 
selected based on their prevalence and poten-
tial risk. Some unbalanced datasets were ex-
perimented to identify the most suitable one. 
In the end, an unbalanced dataset was utilized 
that featured a higher number of Angiectasia 
frames.

The current study was conducted based on 
an independent test set, which was completely 
separated from the data used for training the 
model, resulting in ensuring the robustness 
and generalizability of the findings. By using 
an independent test set, the performance of our 
model was assessed on unseen data; the effec-
tiveness of our approach was validated in real-
world scenarios.

Diverse datasets were employed to devel-
op DCNN models. The datasets utilized en-
compass GIANA [32], KID series [33], and 
Kvasir-Capsule [27]. The inclusion of diverse 
frames from these datasets plays a crucial 
role in enhancing the robustness of the clas-
sifier models. By incorporating a wide range 
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of samples, the models become more resilient 
to conditional variations, such as artifacts and 
variations in the surrounding environments of 
the capsule endoscopy images. This diversity 
in data sources contributes to the development 
of a more comprehensive and adaptable model 
for effectively analyzing and classifying cap-
sule endoscopy images. 

The dataset was segmented into three dis-
tinct categories: training, validation, and test-
ing sets, using a random patient-based split-
ting approach. The allocation of samples 
followed a specific distribution, with 70% of 
the data assigned to the training set, 15% to 
the validation set, and 15% to the testing set. 
This segmentation ensured that the sets were 
non-overlapping and met the defined con-
straints as specified in Equations 1, 2, and 3. In 
these equations, T, V, and S represent the sets 
of training, validation, and test data, respec-
tively. The patient sets designated for training, 
validation, and testing were labeled as PT, PV, 
and PS, respectively.

, T VT V P P∩ =∅ ∩ =∅                 Equation 1

, T ST S P P∩ =∅ ∩ =∅                 Equation 2

, V SV S P P∩ =∅ ∩ =∅                 Equation 3

This study employed two datasets to examine 
the influence of additional Angiectasia frames 
on the overall classification performance  
(Table 1). The unbalanced dataset featured a 
higher number of Angiectasia frames com-
pared to the balanced dataset. To ensure an eq-
uitable assessment of the model’s classification 
performance, more Angiectasia test frames 
were incorporated into the unbalanced data-
set. All images were in the 24-bit PNG format.  
Figure 1 illustrates examples of the CE  
images.

We intentionally did not exclude frames con-
taining artifacts from our dataset. The decision 
to include such frames was driven by our goal 
to develop a more resilient model, ultimately 
enhancing its classification performance.

Data augmentation techniques were em-
ployed [34, 35] to address the challenge of 
limited labeled data and mitigate the risk of 

Classes
Balanced Unbalanced

Train Augmented Validation Test Train Augmented Validation Test
Angiectasia 420 6300 90 90 600 9000 150 150

Inflammatory 420 6300 90 90 420 6300 90 90
Normal 420 6300 90 90 420 6300 90 90

Angiodysplasia 420 6300 90 90 420 6300 90 90

Table 1: Dataset description (balanced and unbalanced)

Figure 1: Examples of the pathologies used in developing the Deep Learning (DL) models in this 
study. The images are sourced from [27, 32], with [27] being a publicly available dataset and 
access to [32] granted by permission from the corresponding author.
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overfitting. This approach involved introduc-
ing variations to the training data by applying 
transformations, such as shifting, horizontal 
and vertical flipping, rotation, zooming, and 
luminance adjustment. Data augmentation 
was exclusively applied to the training data, 
imparting invariance to brightness changes, 
scale, and rotation.

Each frame in the training dataset was aug-
mented with three different brightness levels 
and five rotation levels, resulting in a 15-
fold increase in the dataset size. This process 
causes the model to learn from a more diverse 
range of examples (Table 1).

Deep learning
Deep Learning (DL) systems have demon-

strated superior performance compared to tra-
ditional shallow machine learning algorithms, 
particularly in applications with extensive da-
tasets. The successes of DL models include 
pattern recognition tasks, such as image clas-
sification [36, 37], natural language process-
ing [38], object detection [39, 40], and video 
analysis [41, 42].

In medical applications with limited data-
sets, DL models have effectively employed 
transfer learning, yielding impressive out-
comes in tasks, such as classification, localiza-
tion, detection, and segmentation of medical 
images. The DCNNs stand out as one of the 
most commonly utilized DL architectures for 
medical image analysis.

Deep convolutional neural networks
The DCNNs are commonly composed of 

two main sections: the ConvNet and the fully 
connected sections. The ConvNet section is 
responsible for automatically extracting fea-
tures of increasing complexity from the input 
data. Also, this section typically consists of 
convolutional and pooling layers organized 
into modules.

In addition to convolutional and pooling 
layers, these modules may incorporate other 
techniques, such as batch normalization and 

dropout layers to improve regularization and 
prevent overfitting. Batch normalization helps 
normalize the inputs between layers, while 
dropout randomly deactivates some neurons 
during training, forcing the network to learn 
more robust features.

The overall architecture of a DCNN involves 
stacking convolutional and pooling modules, 
followed by a series of fully connected layers. 
This structure enables the network to learn and 
interpret the extracted features for accurate de-
cisions.

Figure 2 shows a visual representation of the 
DCNN structure.

Ensemble learning
In various machine learning frameworks, 

leveraging a combination of multiple expert 
decision- makers is a common strategy to en-
hance performance in challenging situations. 
This approach is particularly useful when 
dealing with complex data distributions, class 
imbalances, and risk management. Figure 3 
demonstrates the fusion of base-learners to 
create a meta-learner, which forms the core of 
ensemble methods.

Ensemble methods are typically categorized 
into three main classes: Bagging, Stacking, 
and Boosting. In the Bagging approach, mul-
tiple models are trained on randomly sampled 
data, and the final predictions are obtained by 
averaging the outputs of these models. On the 
other hand, Stacking involves training mul-
tiple models on the entire dataset and subse-
quently using a fusion mechanism to derive 
the final prediction. In contrast, the Boosting 
mechanism involves sequentially operating 
ensemble models on the misclassified predic-
tions of prior models to improve overall per-
formance.

In the current study, the Stacking approach 
was selected as the ensemble method. The 
classification performance was improved by 
combining multiple models using Stacking, 
causing the models to learn from different per-
spectives and capture diverse aspects of the 
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data. This process results in improved accu-
racy and robustness in the final predictions.

Proposed method
A total of six well-established DCNN ar-

chitectures were implemented as the convo-
lutional section of the network to construct 
the classifier models. Subsequently, a fully-
connected classifier network that adjusts was 
devised, according to the architecture of the  
convolutional part. The proposed classifier 
was designated with the suffix BFCG (=batch 
normalization + fully connected + global aver-
age pooling) and integrated batch normaliza-
tion, fully connected layers, and global aver-
age pooling. The architecture of the proposed 

DCNN model is illustrated in Figure 4.
The final DCNN classifier is composed of 

the base convolutional part and the designed 
fully connected part. We denoted these classi-
fiers as VG_BFCG (= VGG16 [43] + BFCG), 
DN_BFCG (= DenseNet-201 [44] + BFCG), 
IRN_BFCG (= Inception-ResNet-v2 [45] + 
BFCG), MN_BFCG (= MobileNetV2 [46] 
+ BFCG), RN_BFCG (= ResNet152V2 [47, 
48] + BFCG) and X_BFCG (= Xception [49] 
+ BFCG). A basic schematic of the proposed 
structure is provided in Figure 4.

The proposed fully connected classifier was 
developed through empirical trials, incorpo-
rating a Batch Normalization (BN) layer and 
an l1-regularizer to normalize the layer’s out-

Figure 3: Schematic of Ensemble learning

Figure 2: The schematic representation of deep convolutional neural networks (DCNNs).
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put. In the present study, the number of blocks 
in the classifier significantly influences the 
model’s classification performance. After ex-
perimentation, the final block should consist 
of 32 fully connected neurons. Within each 
block, the number of neurons is halved in 
comparison to the fully connected nodes in the 
preceding block. Consequently, the number of 
nodes specified in the first block is regarded 
as a hyperparameter termed the “number of 
dense nodes”.

A grid search was performed to find the best 
combination of hyperparameters that met the 
criteria of validation accuracy >0.95, test ac-
curacy >0.95, and NPV >0.95 to identify the 
optimal model for each architecture. If these 
criteria were not met, we reported the hyper-
parameters that yielded the best performance 
regardless.

The optimal hyperparameter values varied 
depending on whether the dataset was bal-
anced or unbalanced. For the fully connected 
classifier, the depth was determined by the 
number of nodes in its initial layer. Addition-
ally, a regularization coefficient was applied 
during the training of the fully connected lay-
ers as another hyperparameter for the classifier 
block.

In training the convolutional part of the 
model, several hyperparameters were tuned, 
including the batch size, freezing depth (the 
number of layers to be frozen during train-
ing), input size, learning rate, and dropout 

coefficient. For data preparation and model 
execution, the current study utilized Google 
Colaboratory with the Keras library, taking 
advantage of cloud GPUs to enhance compu-
tational capabilities, leading to efficient pro-
cessing of the data and training the models in a  
resource-efficient manner.

Elu [50] activation function and Adadelta 
[51] optimizer were consistently employed 
across all models and trials. To enhance train-
ing efficiency, an early stopping mechanism 
was implemented, terminating the training 
process for hyperparameter configurations, in 
which the training accuracy did not demon-
strate improvement over 15 epochs.

The proposed algorithm utilized the Stack-
ing approach and investigated two ensemble 
learning methods: model scoring and class 
scoring. Figure 5a illustrates the model scor-
ing hybrid classification, in which the pre-
dicted output of each model was multiplied 
by its respective weight and aggregated across 
classes. On the other hand, Figure 5b depicts 
the tuned hybrid classification, where the  
aggregated predicted class probabilities from 
the base learners were weighted. The inten-
tion behind this approach was to enhance the 
margin in the vicinity of the decision boundar-
ies, improving the algorithm’s overall perfor-
mance.

The mathematical expressions for hybrid 
classification, using model scoring and class 
scoring for m classes and K classifiers, are  

Figure 4: The general structure of the proposed deep convolutional neural networks (DCNN) 
model. The hyperparameters are defined over feature extractor and classifier blocks. (CNN: 
Convolutional Neural Network)
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given by Equations 4 and 5, respectively. 
Weight normalization was conducted by di-
viding the weights by the total sum of weights. 
The scores (αi) are organized in a diagonal ma-
trix (α), as expressed in Equation 6.

( ) ( )
1,2, , 1

argmax 
K

j j
i m j

C x P xβ
= … =

= ∑            Equation 4

( ) ( )
1,2, , 1

argmax  
K

j j
i m j

C x P xα β
= … =

= ∑        Equation 5

1 0
 

0 m

α
α

α

 
 =  
  



  



                        Equation 6

The label assigned by the hybrid classifier 
for input x is denoted by C(x) and calculat-
ed using either model scoring or class scor-
ing, as represented by Equations 4 and 5,  

respectively. As shown in Equation 6, the 
weights of the classes are represented by a 
diagonal matrix, denoted by α. In both ap-
proaches, the class with the highest probabil-
ity is selected as the assigned label.

In Equations 4 and 5, Pj(x) represents the 
prediction vector (four rows, one column) 
generated by the j-th model, and βj and αi rep-
resent the weights for the j-th model and i-th 
class model, respectively. In both approaches, 
the class with the highest probability deter-
mines the assigned label.

The optimal weights for the two approaches 
were determined using a brute force algorithm 
that systematically explores all possible com-
binations until a solution is found. The time 
complexity of this algorithm is typically pro-
portional to the input size.

To obtain the optimal weights, a factorial 

Figure 5: Block diagram of the proposed hybrid classification. a) Model scoring, b) Tuned hybrid 
classification using class scoring 
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design of experiments was employed. The 
weights of models (β) and classes (α) were de-
fined within the range of [0, 1]. The resolution 
in the designed experiment was kept consis-
tent for all factors (classes or models). How-
ever, due to computational constraints, the 
search was conducted with different levels of 
parameters: 16, 20, and 25, resulting in resolu-
tions of 0.0625, 0.05, and 0.04, respectively. 
For example, with a β resolution of 0.0625, 
there were 17 weights for each model, lead-
ing to a total of 176 experiment settings. The 
search duration on Google Colab for hybrid 
classification using model scoring was ap-
proximately 45 minutes.

In both the model scoring and class scoring 
approaches (Figure 5a and b), the prediction 
vector generated by each model is multiplied 
by its corresponding weight (β) for each class. 
The modified vectors are then aggregated to 
produce the final modified predicted vector, 
and the assigned label (class) is determined 
as the one with the highest value. The defined 
weights are utilized during this operation. 
Additionally, in the tuned hybrid classifica-
tion using class scoring (Figure 5b), an ad-
ditional step is introduced by defining a class  
coefficient (α) to enhance discrimination  
between classes.

Results
This section presents the performance results 

of the developed models in the previously in-
troduced four-class classification task. The hy-
perparameters of the developed models were 
optimized using grid search and full factorial 
design of experiments.

Target
This part aimed to identify models that  

satisfy the following criteria:
i. Recall for each class >0.95
ii. Accuracy >0.975 
iii. NPV >0.99.
The performance of both the developed 

models and the hybrid models were evaluated 

based on the following metrics:
Recall

  
TP

TP FN
=

+
                             Equation 7

Precision
  
TP

TP FP
=

+
                         Equation 8

Accuracy TP TN
TP FP FN TN

+
=

+ + +
       Equation 9

  F1 score 2
  

Precision Recall
Precision Recall

×
− = ×

+
     Equation 10

( )Negative Predictive Value NPV TN
TN FN

=
+

    Equation 11

TP, TN, FP, and FN denote the quantities 
of true positives, true negatives, false posi-
tives, and false negatives, respectively. Given 
the limited access to a large medical dataset, 
the dataset is not balanced. However, the F1-
score should be considered (Equation 10) 
when evaluating the performance of a classi-
fier model on an imbalanced dataset. The F1-
score provides a balanced metric by assigning 
equal importance to precision and recall. This 
approach is recommended in situations where 
the class distribution is imbalanced, as it ac-
counts for both the ability of the model to cor-
rectly identify positive instances (recall) and 
its ability to avoid false positives (precision) 
[15].
Classification results
Table 2 presents the 5-fold classification per-

formance of the developed DCNN models on 
both balanced and unbalanced datasets.

The models trained on the balanced dataset 
were excluded from the current investigations 
to maintain conciseness and focus. Hence-
forth, the models trained on the unbalanced 
dataset were exclusively referenced. Among 
these models, VG_BFCG exhibited the best 
performance; however, it did not meet all three 
of the specified criteria mentioned above.

Grad-Cam
Heatmaps were generated using GraD-

CAM [52] to validate the model’s predictions  
concerning the location of abnormalities. In 

Tuned Hybrid Classification Over Capsule Endoscopy Images
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these heatmaps, each pixel’s abnormality score 
is depicted by a color that reflects the gradient 
and prediction score. Figure 6 illustrates the 
heatmaps generated by VG_BFCG.
Ensemble learning
Various combinations of the developed 

models trained on the unbalanced dataset were 
investigated to identify the most suitable set 
of coefficients (weights) for these models. To 

determine the optimal combinations, various 
Designs of Experiments (DOE) were utilized 
at different levels. The qualified combinations 
that achieved an accuracy >0.975 are outlined 
in Table 3. The coefficients (βj) for the mod-
els are reported in tuples, corresponding to the  
ordered list of models presented in Table 2.

Considering the high computational cost as-
sociated with using all models, a full factorial 

Ehsan Roodgar Amoli, et al

Architecture
Balanced Dataset Unbalanced Dataset

5-fold accuracy 5-fold NPV 5-fold accuracy 5-fold NPV
Mean (%) Std (%) Mean (%) Std (%) Mean (%) Std (%) Mean (%) Std (%)

VG_BFCG 94.60 1.42 98.30 0.55 95.23 2.07 97.70 0.65
DN_BFCG 84.20 2.05 87.70 3.21 92.7 2.39 94.38 2.14
IRN_BFCG 86.20 0.37 92.50 1.14 90.07 1.08 97.02 1.03
MN_BFCG 89.00 1.70 92.10 1.79 88.40 1.66 95.08 1.59
X_BFCG 82.90 1.60 88.10 1.22 86.60 1.30 94.76 1.22

RN_BFCG 86.60 1.61 90.50 2.17 85.90 1.28 83.34 2.77
NPV: Negative Predictive Value, Std: standard deviation 
BFCG (=batch normalization + fully connected + global average pooling) represents the structure of our proposed classifier. 
VG_BFCG (= VGG16 + BFCG), DN_BFCG (= DenseNet-201 + BFCG), IRN_BFCG (= Inception-ResNet-v2 + BFCG), MN_
BFCG (= MobileNetV2 + BFCG), X_BFCG (= Xception + BFCG), RN_BFCG (= ResNet152V2 + BFCG) 

Table 2: 5-fold Classification performance of the developed deep convolutional neural networks 
(DCNNs) models over balanced and unbalanced dataset

Figure 6: Grad-Cam Heat map visualization provided by the best-performed model; VG_BFCG.
(BFCG (=batch normalization + fully connected + global average pooling) represents the  
structure of our proposed classifier. VG_BFCG (= VGG16 + BFCG))
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No. Coefficients Acc NPV Precision Recall F1-score

1 (0.4, 0.2, 0.4, 0, 0, 0.12) 0.979 0.989 (1,0.97,0.99,0.95) (0.99,0.97,1,0.96) (0.99,0.97,0.99,0.95)

2 (0.625, 0.3125, 0.625, 0, 0, 0.1875) 0.979 0.989 (1,0.97,0.99,0.95) (0.99,0.97,1,0.96) (0.99,0.97,0.99,0.95)
3 (0.875, 0.4375, 0.875, 0, 0, 0.25) 0.979 0.989 (1,0.97,0.99,0.95) (0.99,0.97,1,0.96) (0.99,0.97,0.99,0.95)
4 (0.4, 0.15, 0.475, 0, 0, 0) 0.976 1.0 (1,0.96,1,0.93) (0.99,0.97,0.99,0.96) (0.99,0.96,0.99,0.95)
5 (0.45, 0.1, 0.525, 0, 0, 0) 0.976 1.0 (1,0.96,1,0.93) (0.98,0.97,1,0.96) (0.99,0.96,1,0.95)

ACC: Accuracy, NPV: Negative Predictive Value

Table 3: Hybrid classification performance on the test dataset in detail: weights of models in the 
top qualified combinations

No. Coefficients Class weight Acc NPV

1 (0.4, 0.2,0.4, 0.12) (0.75, 0.25, 0.375, 0.4375) 0.9881 1.00

2 (0.625, 0.3125, 0.625,1875) (0.75, 0.25, 0.375, 0.4375) 0.9881 1.00
3 (0.875, 0.4375, 0.875, 0.25) (0.8125, 0.25, 0.375, 0.4375) 0.9881 1.00

ACC: Accuracy, NPV: Negative Predictive Value

Table 4: Tuned hybrid classification: coefficients of models and weight of classes yielding the 
highest evaluation metrics on the test dataset

DOE was initially performed with 9 levels for 
each factor (step size of 0.125) to identify the 
most significant models that produced the best 
accuracy. Subsequently, DOE was employed 
with finer distinction levels while utilizing 
only a selected set of models. The following 
combinations yielded the best results:

1. (VG_BFCG, DN_BFCG, IRN_BFCG, 
RN_BFCG)

2. (VG_BFCG, DN_BFCG, IRN_BFCG)
Class scoring was implemented over the top-

qualified combinations listed in Table 3. For 
the four factors (classes), a full factorial DOE 
was performed with a step size of 0.0625.  
Table 4 details the best weights for the models 
and classes, with each 4-tuple representing the 
weights associated with Angiectasia, Inflam-
matory, Normal, and Angiodysplasia, respec-
tively. The qualitative comparison provided in 
Table 5, proves the efficacy of our proposed 
tuned hybrid classifier.

Discussion
The incorporation of more Angiectasia 

frames in the unbalanced dataset (Table 1) 
resulted in improved classification metrics 
for all classes. The unbalanced dataset nota-
bly contributed to enhancing the NPV. For 
IRN_BFCG, it facilitated a more effective 
distinction between the Normal class and 
other pathologies. VG_BFCG, trained on the 
unbalanced dataset, showed the best classifi-
cation performance, while models with more 
parameters, such as RN_BFCG, exhibited 
comparatively poorer performances, showing 
a complex DCNN is not imperative for lesion 
classification.

As illustrated in Figure 6, the highlighted 
regions demonstrate distinct prominence even 
in the presence of background areas exhibit-
ing similar textures, showing VG_BFCG has 
been effectively trained to capture the crucial 
features specific to each pathology. The VG_
BFCG achieves accurate classification of the 
Angiectasia and Angiodysplasia classes, as 
well as samples without any disease (Normal). 
The NPV assumes particular importance in 
the risk management of decision systems, as 
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Year Study Model Dataset Abnormality Performance evaluation 
Process  

Time/frame (s)

2021
Houdeville 
et al. [3]

CNN-based 
model

More than 1200 Pill-
cam and MiroCam 
still frames (with or 

without angiectasias)

Angiectasias
Sensitivity = 97.4% 
Specificity = 98.8% 

NPV = 97.6%
0.021

2021
Caroppo 
et al. [53]

Three pre-trained 
DCNN (VGG19, 
InceptionV3 and 
ResNet5) + SVM

KID dataset (KID I + 
KID II)

Bleeding
Average accuracy I = 97.65% 
Average accuracy II = 95.70% 

-

2022
Alam  

et al. [54]

CNN based 
architecture (RAt-

CapsNet)
Kvasir Capsule

Ulcer + Erosion 
+ Blood + Lym-
phangiectasis + 

Angiectasia

Accuracy (binary class) = 98.51% 
Accuracy (multi class) = 95.65%

-

2022
Vani et al. 

[55]
State-of-the-art 

CNN

Endoatlas and 
GastroLab database 

(2019)
Ulcer 

Precision = 97.8% 
Recall = 97% 

Accuracy = 96.68% 
ROC = 0.84

-

2022
Vats et al. 

[56]

Multi-channel 
encoder-decoder 

network

Kvasir-Capsule + 
Computer Assisted 
Diagnosis for Cap-

sule Endoscopy

Nine different 
pathologies

Sensitivity >94% 
Specificity >97% 

AUC >97% 
Accuracy >98% 

For nine abnormality classes

-

2023 Ours

Six pre-trained 
DCNNs, Hybrid 

classification 
(model scoring 

and class scoring)

GIANA + KID + 
Kvasir-Capsule

Angiectasia, 
Angiodysplasia, 

Inflammatory

Accuracy = 98.8% 
NPV = 100%

0.007

CNN: Convolutional Neural Network, NPV: Negative Predictive Value, DCNN: Deep Convolutional Neural Network, KID: KID 
series [33] SVM: Support Vector Machine, ROC: Receiver Operating Characteristic Curve, AUC = Area Under The ROC Curve, 
GIANA: GIANA [32]

Table 5: A comprehensive comparison between our approach and related works.

false predictions of abnormal frames can lead 
to detrimental outcomes in clinical routines. 
Among the classification tasks examined in 
the present study, Angiodysplasia proved to be 
the most challenging pathology. 

The hybrid classification using model scor-
ing has shown the effectiveness of the devel-
oped models in accurately labeling frames. 
As evident in Table 3, the highest accuracy 
(greater than 0.978) was achieved. Complex 
DCNNs like Xception and MobileNet did not 
contribute significantly to the proposed hy-
brid classification. In Table 4, it is observed 

that the accuracy was significantly enhanced 
by employing the class scoring mechanism. 
The accuracy increased from 0.978 to 0.9881, 
and the NPV increased from 0.989 to 1.00 us-
ing the class scoring technique. These results 
signify that the use of class scoring improved 
the performance metrics by enabling better  
distinction among different classes.

Using the combination of VG_BFCG, DN_
BFCG, IRN_BFCG, and RN_BFCG yielded 
the best classification performance in hybrid 
classification as listed in Table 3. RN_BFCG 
and X_BFCG displayed poor classification 
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performances. Consequently, these two clas-
sifiers do not contribute complementary dis-
tinction powers compared to the other four 
models. The combination of only the best  
classifiers can attain accuracy>0.975.

Ensemble learning has significantly im-
proved the classification metrics (Tables 2-4). 
The implementation of class scoring in the 
top hybrid classifiers is remarkably effective 
in constructing an accurate decision bound-
ary that aligns with hybrid classification tasks 
(Table 3).

The major contribution of this study lies 
in the introduction of a novel hybrid classi-
fication approach for a four-class task, with 
a specific focus on evaluating the NPV and 
F1-score. This aspect of the research has not 
been previously explored, adding novelty to 
the study. To further validate the performance 
of the models, heatmap visualization was 
conducted, providing compelling evidence of 
the models’ robust feature learning and high  
accuracy.

The results obtained in this study highlight 
a notable difference from prior works, which 
have predominantly relied on private data-
sets and focused on binary classifications  
(Table 5). This limitation poses challenges 
in terms of generalizability. In contrast, the 
proposed algorithm demonstrates satisfacto-
ry performance and holds promise for future 
studies. However, it is important to acknowl-
edge the limitations of this research. Firstly, 
the proposed DCNN models were trained  
using static frames, which may limit the appli-
cability of our findings in clinical practice. To 
extrapolate the obtained results to real-world 
scenarios, further evaluation using full-length 
video data is necessary. This would provide a 
more comprehensive understanding of the al-
gorithm’s performance in dynamic contexts. 
Secondly, the use of a publicly available data-
set restricted the ability to validate the devel-
oped models on a larger dataset with a greater 
number of patients. While the dataset used in 
this study was valuable for initial experimen-

tation, future work should aim to validate the 
algorithm’s performance on diverse datasets 
to ensure its robustness and generalizability.

Conclusion
This study presents an effective DCNN mod-

el designed to accurately differentiate diseases 
from CE images. Three public databases were 
leveraged, and among the models developed, 
VG_BFCG trained on the unbalanced dataset 
exhibited superior performance. Grad-Cam 
heat maps illustrated that VG_BFCG is par-
ticularly adept at extracting key features for 
each pathology.

Hybrid classification utilizing model scor-
ing achieved an accuracy of 0.979 and NPV 
of 0.989. In the current study, while the six 
models introduced performed well individu-
ally, the fine-tuned ensemble structure using 
the class scoring mechanism led to increased 
accuracy by adjusting the class probabilities 
within the decision boundaries. The perfor-
mance of the tuned hybrid classifier devel-
oped surpassed our goal, with an accuracy of 
0.9881 and an NPV of 1.00. The approach in 
this work exhibits several notable highlights, 
as follows: 1) our dataset encompasses both 
major forms of lesions - vascular lesions and 
protruding lesions - providing a more compre-
hensive understanding of disease classifica-
tion. This inclusion contributes to a more ro-
bust and accurate classification system and 2) 
we conducted a thorough evaluation of the de-
cision boundaries drawn for the Normal class, 
specifically considering color and textural 
patterns. This analysis enabled the identifica-
tion of areas with potential for improvement, 
thus enhancing the accuracy and reliability of 
our classification process. Lastly, through the 
use of class scoring, significant enhancements 
were achieved in all classification perfor-
mance metrics. By assigning weights to each 
class during the decision-making process, 
we improved the overall performance of our  
hybrid classifier.

Tuned Hybrid Classification Over Capsule Endoscopy Images
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