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Introduction

Reducing personal exposure by improving shielding properties 
is an important subject in radiation safety [1]. Single or mixed  
radiation sources have been provided due to the increasing 

growth of nuclear energy in various aspects of technology, medicine, di-
agnostics, and imaging, and have made radiation shielding an interesting  
subject for research in physics and nuclear engineering [2].

Various materials can be considered based on the type and intensity of 
the source and application of the shield. For gamma rays, which the pres-
ent work deals with, these shields can include concretes, alloys, glass-
es, and epoxy-based composite shields [3-10]. Among these materials, 
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glasses are widely used for radiation protec-
tion because they serve dual functions: being 
transparent to visible light while also absorb-
ing gamma rays and neutrons. Additionally, 
their composition can include a diverse range 
of elements, making them a versatile shield 
that researchers can tailor to their needs [2]. 
Heavy metal oxide glasses, including silicate, 
and borate glasses have been confirmed to 
have excellent potential as shielding materials. 
Tellurite glasses have recently gained interest 
due to their low melting point, high thermal 
ability, low crystallization, proper chemical 
resistance, and high dielectric constant [11-
13]. These glasses are recommended for use in 
medicine and photonics, including laser pro-
duction, optical amplifiers, aerial surveillance 
equipment, and various other devices [14]. 

There are two possible approaches for the 
design and optimization of shields, including 
the analytical method and Monte Carlo simu-
lations. Monte Carlo is a well-known method 
for not only studying particle transport and 
possible interactions through the medium but 
also simulating complicated geometries and 
multi-layer materials. However, the accura-
cy of the Monte Carlo method is essentially 
based on repeated random sampling and a 
number of transported histories. Accordingly, 
the examination is time-consuming. Artificial 
Neural Networks (ANNs) provide a series of 
algorithms to recognize a relationship between 
a set of input data through a process inspired 

by the human brain and to prevent research-
ers from doing time-consuming simulations 
or experiments for all available situations in 
the problem under consideration. The ANN is 
a shortcut to save time and cost of computa-
tional methods by using a limited number of 
simulations or experimental data.

The present work is devoted to studying 
the feasibility of using ANN to analyze and 
optimize the shield for radiation sources. To 
this aim, a glass gamma shield (TeO2–V2O5–
Bi2O3) was simulated for a 2.056 MeV gam-
ma-ray source [5]. By considering different 
variables, such as the weight fraction of the 
compositions, a set of Monte Carlo input data 
was extracted for learning ANNs. The results 
were tested by surveying the accuracy of the 
method. MCNPX code (version 2.6) was 
utilized for simulations and transport of the  
particles.

Material and Methods

Monte Carlo simulations 
In this simulating study, based on the refer-

enced shield proposed by Hendi et al. [5], 3 cm 
of the TeO2-V2O5-Bi2O3 glass was considered. 
There was a gamma collimator made of lead 
with an outer radius of 11.35 cm and an in-
ner radius of 1.5 mm, surrounding the gamma 
source of 2.056 MeV and the HPGe detector. 
The gamma source was located at a distance 
of 9 cm from the sample. Figure 1 shows a  

Figure 1: A schematic view of the simulated geometry, components, and dimensions based on 
the work proposed by Hendi et al [5].

II



J Biomed Phys Eng

Designing a Gamma Shield Using ANN
schematic view of the simulated geometry.

Providing data for machine  
learning 

As the prominent data processing systems, 
ANNs can provide intelligent relations, linear, 
and non-linear, between the input and output 
data. The modeling consists of a network of 
nonlinear information that processes the ini-
tial input information. These are normally 
arranged in layers and executed in parallel, 
known as the topology of a neural network. 
These nonlinear information processing ele-
ments in the network are called neurons with 
interconnections named synaptic weights. 
The learning algorithm is vital in training the 
network to analyze the input data in a mean-
ingful way. Neural networks are trained with 
supervised algorithms, in which the desired 
output must be provided for the correspond-
ing input data set employed in the training of 
the machine [15]. By increasing the amount 
of entrance information, the accuracy of the 
calculations is expected to increase. The input 
data may be generated by taking into account 
multiple parameters by using either simu-
lations or experimental works. In the pres-
ent study, various parameters are available, 
such as the shield thickness, the elements of  

compositions, source energy, and source  
particle type. 

Figure 2 is a schematic view of a simple net-
work process and the three types of construct-
ing layers. The input layer is the data given 
to the machine as available information, pro-
cessed through the hidden layer(s). In the next 
step, another data is provided by the output 
layer, which is the output data set. 

The weight fractions of the elements in the 
glass compounds were treated as variable pa-
rameters. These fractions were adjusted from 
2% to 96% for each component in increments 
of 2%. Equation (1) was used to calculate 
these weight fractions, as follows: 

( ) .
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×

=                   (1)

where wi is the percentage of the presence of 
the ith element, N is the number of the element 
in the compound, 

ixM  is the molecular weight 
of the ith element, and Mi is the molecular 
weight of the compound.

Utilizing the mentioned geometry  
(Figure 1), simulations have been accom-
plished by using MCNPX code for five weight 
fractions reported in Figure 3, and also the  
accuracy of the simulation has been approved 
by comparing the obtained results with those 

Figure 2: A schematic view of the neural network process.
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of Hendi et al., [5].
Changing the weight fractions results in 

900 MCNPX samples, which provides an  
appropriate input matrix for machine learn-
ing. Table 1 reports examples of the calculated 
weight fractions in 900 samples with the step 
of 100 in their labeled number.

The number of photons on the arrival  
window of the HPGe detector has been  

counted using the F1 tally. Hence, two data-
sets were used for the input and target of the 
network: a 4×900 matrix that constitutes the 
input matrix, and a 1×900 matrix that forms 
the target matrix. After generating the in-
put and the target matrix, the neural network  
analyzes the data. 

The designed neural network predicts par-
ticle counts for provided samples in the detec-
tor after passing through a TeO2-V2O5-Bi2O3 
glass; the neural network processes the input 
matrix and finds the relation between the input 
and the target matrixes by changing the weight 
in its function. The designed model was devel-
oped using the Feed-Forward Back Propaga-
tion Network type with the adoption learning 
function of the Levenberg-Marquardt algo-
rithm and calculating mean square error. For 
the given dataset, 25 neurons and one hidden 
layer were obtained as optimized structures. 
Figure 4 represents a schematic view of the 
designed network.

Dose evaluations
The efficiency of the optimized sample was 

investigated through the physical dose for  
different thicknesses. In this calculation, a wa-

Figure 3: The transition of the gamma rays 
versus the thickness for various weight  
fractions suggested by Hendi et al., [5]. 

No. TeO2-V2O5-Bi2O3

Component (%) Elements weight fraction
TeO2 V2O5 Bi2O3 Oxygen Vanadium Tellurium Bismuth

50 0.04 0.04 0.92 0.121 0.022 0.032 0.825
100 0.06 0.1 0.84 0.143 0.056 0.048 0.754
200 0.1 0.28 0.62 0.207 0.157 0.080 0.556
300 0.14 0.54 0.32 0.299 0.303 0.112 0.287
400 0.2 0.08 0.72 0.150 0.045 0.159 0.646
500 0.24 0.54 0.22 0.309 0.303 0.191 0.197
600 0.3 0.38 0.32 0.261 0.213 0.239 0.287
700 0.36 0.4 0.24 0.274 0.224 0.287 0.215
800 0.44 0.04 0.52 0.161 0.022 0.351 0.466
900 0.5 0.48 0.02 0.314 0.269 0.399 0.018

Table 1: Examples of weight fraction calculations for the TeO2-V2O5-Bi2O3 glass.
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ter-filled phantom was located in the detector 
position (Figure 1). Tally F6 has been used for 
dose calculations with a relative error of less 
than 1%.

Results

Training by all the data
At first, the learning precision of the network 

has been investigated for all data. In this step, 
the network has been evaluated with all sam-
ples of the input data. Hence, the 4×900 input 
matrix was given to the network as input and 
the 1×900 matrix was considered as the target. 
The network has been trained with the given 
information. Figure 5 illustrates the results of 
this training.

Training more than 98% of the data
The input matrix was considered up to 880th 

samples, in which the matrix will be 4×880, 
and the target matrix will be 1×880. The 
network was trained for these samples and 
was asked to estimate the 20 remained data.  
Figure 6 presents the network performance 
compared to the MCNP results for the F1 tally.

Unknown data
Unknown data refers to the samples out of 

the range of the trained dataset. This step is 
to assess the availability of the designed net-
work for all samples. The designed network 
with a given input and target matrix, including 
900 samples, has been trained through a neu-

Figure 4: The neural network process used in the present work.

Figure 5: Comparison of the results obtained 
through Artificial Neural Network (ANN) by  
training all 900 data with those of MCNPX 
code.

Figure 6: Comparison of the results of the 
last 20 data in the MCNPX input data set 
with those of ANN.
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ral network. In the next step, the network was 
supposed to predict the new unknown sam-
ples, i.e. are out of range. Table 2 represents 
a comparison between the results predicted 
by the network and those of the MCNPX  
simulations.

Optimizing dimension 
In this part, the weight fraction of the sample 

labeled as number 399, showing that the best 
performance has been selected for thickness 
optimization. Thicknesses of 1 to 8 cm were 
candidates as radiation shields. In addition, 
dose evaluation was considered for these sam-
ples. Figure 7 reports the results of this inves-
tigation by considering the activity of 20 µCi 
for the gamma source.

Discussion
As shown in Figure 5, the predicted F1 tally 

by ANN is in acceptable agreement with those 
of the MCNPX results. The deviation between 
ANN and MCNPX results was less than 1%. 
Therefore, the trained network has the capa-
bility for the prediction of unknown weight 
fractions to evaluate outputs. Also, Figure 6 
shows acceptable agreement between the re-
sults of 20 points of MCNPX input data with 
those of ANN. According to the data present-
ed in Table 2, the ANN has also appropriate 
performance for unknown samples that were 
not trained before. In Figure 7, the calculated 
dose in the water phantom was examined for 
various thicknesses of the sample. IAEA rec-
ommended dose limits for workers per year 
and compared the results of Figure 7 with the 
whole-body dose limit of 1 mSv per year.

Conclusion
This study is focused on a particular glass 

shield as an example. First, the accuracy of the 
simulation was checked with the referenced 
shield results. Next, a great dataset was gath-
ered through the simulations accomplished 
using MCNPX2.6 code. Then, this dataset 
was used to form input and target matrices 

NO. MCNPX Neural Network Error (%)

1 0.335 0.328 2

2 0.364 0.357 1.9

3 0.589 0.586 0.5

4 0.371 0.363 2.1

5 0.529 0.524 0.9

6 0.419 0.412 1.7
7 0.481 0.474 1.4

8 0.477 0.470 1.4

9 0.420 0.413 1.6

10 0.496 0.490 1.2

Table 2: The results of the neural network for 
completely unknown samples. In addition, 
MCNPX results were used to investigate the 
validation of ANN results.

in MATLAB. Also, there was a comparison  
between the results from the simulation and 
the network. Finally, the samples which the 
corresponding data were not learned to the 
machine before, were used to assess the ANN 
performance. The results were compared with 
those of the simulations.

Figure 7: Comparison of dose results and 
dose limitation. 
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There is a significant correlation between 
the results of the considered network and 
simulation. The deviation was less than 1% in 
data set comparisons and unknown samples. 
Therefore, this method can be a simple and af-
fordable way to design the appropriate shield 
without using Monte Carlo simulations.

This study is focused on a particular glass 
shield as an example. First, the accuracy of the 
simulation was checked with the referenced 
shield results. Next, a great dataset was gath-
ered through the simulations accomplished 
using MCNPX2.6 code. Then, this dataset 
was used to form input and target matrices in 
MATLAB. Also, there was a comparison be-
tween the results from the simulation and the 
network. Finally, the samples which the corre-
sponding data were not learned to the machine 
before, were used to assess the ANN perfor-
mance. The results were compared with those 
of the simulations.

There is a significant correlation between 
the results of the considered network and 
simulation. The deviation was less than 1% in 
data set comparisons and unknown samples. 
Therefore, this method can be a simple and  
affordable way to design the appropriate  
shield without using Monte Carlo simulations.

The dose was evaluated in the case of the 
optimized weight fraction for 20 µCi source 
intensity. In addition, considering the annual 
dose limitation of 1 mSv for individuals, it 
was tried to find the optimized dimension for 
the sample to decrease the dose. For this pur-
pose, 8 samples with thicknesses of 1 to 8 cm 
with steps of 1 cm were tested.

The trained network not only leads to ac-
ceptable results in a known dataset of given 
input and target but also is used for unknown 
samples out of the range of the training da-
taset. In addition, the network precision was 
considered with some randomly unknown 
samples. The deviation between the predicted 
results from those of the MCNPX simulations 
was less than 2%. The results emphasize that 
the final optimum shield can be obtained based 

on the prepared dataset without conventional 
calculations based on the MCNPX code. It is 
worth mentioning that the present results can 
be extended to the simulation of more compli-
cated models of the arrangement of the source, 
the shield, and the detector considering a wide 
span of shield materials. Also, it can be inves-
tigated for other sources or mixed radiation 
fields. The present results are encouraging and 
the mentioned problems offer new ways to ac-
complish more research on the performance of 
the ANN in optimization studies. 
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