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ABSTRACT

Background: Designing shields for gamma radiation sources is particularly
important due to their extensive use in medical, industrial, and research studies.

Objective: This study aimed to explore the ability of an Artificial Neural Net-
work (ANN) to identify the optimized shield for a typical gamma source. Despite the
effectiveness of Monte Carlo simulations in determining optimal shielding materials
and geometries, they are time-consuming and require numerous simulations for each
configuration.

Material and Methods: In this simulating study, the MCNPX Monte Carlo
code was utilized to conduct simulations using a previously proposed shielding mate-
rial. After validating the simulation accuracy, a large dataset was generated to serve
as input and target data for the machine learning process. The method’s precision was
assessed by comparing the results of the ANN with those of Monte Carlo simulations.
Dose calculations were performed using a water phantom.

Results: The deviation of less than 1% was computed between the simulation
and the ANN. The network also exhibited satisfactory predictions for unknown data.
Additionally, the dose was evaluated using a water phantom to assess further and
optimize the selected shielding material.

Conclusion: The ANNs are widespread and significant in radiation shielding
studies. The developed network can accurately predict unknown weight fraction
combinations. The designed network can effectively predict unknown weight fraction
combinations.

Citation: Mokhtari DorostkarM, Rasouli FS. Artificial Neural Network for Optimizing Gamma Radiation Shielding. J Biomed Phys Eng.
2025;15(6):567-574. do: 10.31661/jbpe.v0i0.2312-1694.

Keywords
Monte Carlo Method; Dose; Gamma Radiation; Shielding; Phantom; Machine
Learning; Computer Simulation; Exposure

Introduction
educing personal exposure by improving shielding properties
is an important subject in radiation safety [1]. Single or mixed
radiation sources have been provided due to the increasing
growth of nuclear energy in various aspects of technology, medicine, di-
agnostics, and imaging, and have made radiation shielding an interesting
subject for research in physics and nuclear engineering [2].

Various materials can be considered based on the type and intensity of
the source and application of the shield. For gamma rays, which the pres-
ent work deals with, these shields can include concretes, alloys, glass-
es, and epoxy-based composite shields [3-10]. Among these materials,
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glasses are widely used for radiation protec-
tion because they serve dual functions: being
transparent to visible light while also absorb-
ing gamma rays and neutrons. Additionally,
their composition can include a diverse range
of elements, making them a versatile shield
that researchers can tailor to their needs [2].
Heavy metal oxide glasses, including silicate,
and borate glasses have been confirmed to
have excellent potential as shielding materials.
Tellurite glasses have recently gained interest
due to their low melting point, high thermal
ability, low crystallization, proper chemical
resistance, and high dielectric constant [11-
13]. These glasses are recommended for use in
medicine and photonics, including laser pro-
duction, optical amplifiers, aerial surveillance
equipment, and various other devices [14].
There are two possible approaches for the
design and optimization of shields, including
the analytical method and Monte Carlo simu-
lations. Monte Carlo is a well-known method
for not only studying particle transport and
possible interactions through the medium but
also simulating complicated geometries and
multi-layer materials. However, the accura-
cy of the Monte Carlo method is essentially
based on repeated random sampling and a
number of transported histories. Accordingly,
the examination is time-consuming. Artificial
Neural Networks (ANNSs) provide a series of
algorithms to recognize a relationship between
a set of input data through a process inspired
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by the human brain and to prevent research-
ers from doing time-consuming simulations
or experiments for all available situations in
the problem under consideration. The ANN is
a shortcut to save time and cost of computa-
tional methods by using a limited number of
simulations or experimental data.

The present work is devoted to studying
the feasibility of using ANN to analyze and
optimize the shield for radiation sources. To
this aim, a glass gamma shield (TeO,-V,0~
Bi,0,) was simulated for a 2.056 MeV gam-
ma-ray source [5]. By considering different
variables, such as the weight fraction of the
compositions, a set of Monte Carlo input data
was extracted for learning ANNs. The results
were tested by surveying the accuracy of the
method. MCNPX code (version 2.6) was
utilized for simulations and transport of the
particles.

Material and Methods

Monte Carlo simulations

In this simulating study, based on the refer-
enced shield proposed by Hendi et al. [5], 3 cm
of the TeO,-V,0.-Bi,0, glass was considered.
There was a gamma collimator made of lead
with an outer radius of 11.35 cm and an in-
ner radius of 1.5 mm, surrounding the gamma
source of 2.056 MeV and the HPGe detector.
The gamma source was located at a distance
of 9 cm from the sample. Figure 1 shows a
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Figure 1: A schematic view of the simulated geometry, components, and dimensions based on

the work proposed by Hendi et al [5].
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schematic view of the simulated geometry.

Providing data for machine
learning

As the prominent data processing systems,
ANNSs can provide intelligent relations, linear,
and non-linear, between the input and output
data. The modeling consists of a network of
nonlinear information that processes the ini-
tial input information. These are normally
arranged in layers and executed in parallel,
known as the topology of a neural network.
These nonlinear information processing ele-
ments in the network are called neurons with
interconnections named synaptic weights.
The learning algorithm is vital in training the
network to analyze the input data in a mean-
ingful way. Neural networks are trained with
supervised algorithms, in which the desired
output must be provided for the correspond-
ing input data set employed in the training of
the machine [15]. By increasing the amount
of entrance information, the accuracy of the
calculations is expected to increase. The input
data may be generated by taking into account
multiple parameters by using either simu-
lations or experimental works. In the pres-
ent study, various parameters are available,
such as the shield thickness, the elements of

Input Layer

compositions, source energy, and source
particle type.

Figure 2 is a schematic view of a simple net-
work process and the three types of construct-
ing layers. The input layer is the data given
to the machine as available information, pro-
cessed through the hidden layer(s). In the next
step, another data is provided by the output
layer, which is the output data set.

The weight fractions of the elements in the
glass compounds were treated as variable pa-
rameters. These fractions were adjusted from
2% to 96% for each component in increments
of 2%. Equation (1) was used to calculate
these weight fractions, as follows:

w, N xM %,

W) =00, W)

where w, is the percentage of the presence of
the /™ element, N is the number of the element
in the compound, M , is the molecular weight
of the i" element, and M, is the molecular
weight of the compound.

Utilizing  the  mentioned  geometry
(Figure 1), simulations have been accom-
plished by using MCNPX code for five weight
fractions reported in Figure 3, and also the
accuracy of the simulation has been approved
by comparing the obtained results with those
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Figure 2: A schematic view of the neural network process.
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of Hendi et al., [5].

Changing the weight fractions results in
900 MCNPX samples, which provides an
appropriate input matrix for machine learn-
ing. Table 1 reports examples of the calculated
weight fractions in 900 samples with the step
of 100 in their labeled number.

The number of photons on the arrival

window of the HPGe detector has been
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Figure 3: The transition of the gamma rays
versus the thickness for various weight
fractions suggested by Hendi et al., [5].

counted using the F1 tally. Hence, two data-
sets were used for the input and target of the
network: a 4x900 matrix that constitutes the
input matrix, and a 1x900 matrix that forms
the target matrix. After generating the in-
put and the target matrix, the neural network
analyzes the data.

The designed neural network predicts par-
ticle counts for provided samples in the detec-
tor after passing through a TeO,-V,0.-Bi,0,
glass; the neural network processes the input
matrix and finds the relation between the input
and the target matrixes by changing the weight
in its function. The designed model was devel-
oped using the Feed-Forward Back Propaga-
tion Network type with the adoption learning
function of the Levenberg-Marquardt algo-
rithm and calculating mean square error. For
the given dataset, 25 neurons and one hidden
layer were obtained as optimized structures.
Figure 4 represents a schematic view of the
designed network.

Dose evaluations

The efficiency of the optimized sample was
investigated through the physical dose for
different thicknesses. In this calculation, a

Table 1: Examples of weight fraction calculations for the TeO,-V,0.-Bi.O, glass.

TeO,-V,0,-Bi,0,

No. Component (%) Elements weight fraction
TeO, V.0, Bi,O, Oxygen Vanadium  Tellurium  Bismuth

50 0.04 0.04 0.92 0.121 0.022 0.032 0.825
100 0.06 0.1 0.84 0.143 0.056 0.048 0.754
200 0.1 0.28 0.62 0.207 0.157 0.080 0.556
300 0.14 0.54 0.32 0.299 0.303 0.112 0.287
400 0.2 0.08 0.72 0.150 0.045 0.159 0.646
500 0.24 0.54 0.22 0.309 0.303 0.191 0.197
600 0.3 0.38 0.32 0.261 0.213 0.239 0.287
700 0.36 0.4 0.24 0.274 0.224 0.287 0.215
800 0.44 0.04 0.52 0.161 0.022 0.351 0.466
900 0.5 0.48 0.02 0.314 0.269 0.399 0.018
570
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Figure 4: The neural network process used in the present work.

water-filled phantom was located in the detec-
tor position (Figure 1). Tally F6 has been used
for dose calculations with a relative error of
less than 1%.

Results

Training by all the data

At first, the learning precision of the network
has been investigated for all data. In this step,
the network has been evaluated with all sam-
ples of the input data. Hence, the 4x900 input
matrix was given to the network as input and
the 1x900 matrix was considered as the target.
The network has been trained with the given
information. Figure 5 illustrates the results of
this training.

Training more than 98% of the data

The input matrix was considered up to 880
samples, in which the matrix will be 4x880,
and the target matrix will be 1x880. The
network was trained for these samples and
was asked to estimate the 20 remained data.
Figure 6 presents the network performance
compared to the MCNP results for the F1 tally.

Unknown data

Unknown data refers to the samples out of
the range of the trained dataset. This step is
to assess the availability of the designed net-
work for all samples. The designed network
with a given input and target matrix, includ-
ing 900 samples, has been trained through a
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Figure 5: Comparison of the results obtained
through Artificial Neural Network (ANN) by
training all 900 data with those of MCNPX
code.
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Figure 6: Comparison of the results of the
last 20 data in the MCNPX input data set
with those of ANN.
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neural network. In the next step, the network
was supposed to predict the new unknown
samples, i.e. are out of range. Table 2 rep-
resents a comparison between the results
predicted by the network and those of the
MCNPX simulations.

Optimizing dimension

In this part, the weight fraction of the sample
labeled as number 399, showing that the best
performance has been selected for thickness
optimization. Thicknesses of 1 to 8§ cm were
candidates as radiation shields. In addition,
dose evaluation was considered for these sam-
ples. Figure 7 reports the results of this inves-
tigation by considering the activity of 20 pCi
for the gamma source.

Discussion

As shown in Figure 5, the predicted F1 tally
by ANN is in acceptable agreement with those
of the MCNPX results. The deviation between
ANN and MCNPX results was less than 1%.
Therefore, the trained network has the capa-
bility for the prediction of unknown weight
fractions to evaluate outputs. Also, Figure 6
shows acceptable agreement between the re-
sults of 20 points of MCNPX input data with
those of ANN. According to the data present-
ed in Table 2, the ANN has also appropriate
performance for unknown samples that were
not trained before. In Figure 7, the calculated
dose in the water phantom was examined for
various thicknesses of the sample. IAEA rec-
ommended dose limits for workers per year
and compared the results of Figure 7 with the
whole-body dose limit of 1 mSv per year.

Conclusion

This study is focused on a particular glass
shield as an example. First, the accuracy of the
simulation was checked with the referenced
shield results. Next, a great dataset was gath-
ered through the simulations accomplished
using MCNPX2.6 code. Then, this dataset
was used to form input and target matrices

in MATLAB. Also, there was a comparison
between the results from the simulation and
the network. Finally, the samples which the
corresponding data were not learned to the
machine before, were used to assess the ANN
performance. The results were compared with
those of the simulations.

Table 2: The results of the neural network for
completely unknown samples. In addition,
MCNPX results were used to investigate the
validation of Artificial Neural Network (ANN)
results.

NO. MCNPX Neural Network Error (%)

1 0.335 0.328 2

2 0.364 0.357 1.9
3 0.589 0.586 0.5
4 0.371 0.363 2.1
5 0.529 0.524 0.9
6 0.419 0.412 1.7
7 0.481 0.474 14
8 0.477 0.470 1.4
9 0.420 0.413 1.6
10 0.496 0.490 1.2
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Figure 7: Comparison of dose results and
dose limitation.
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There is a significant correlation between
the results of the considered network and
simulation. The deviation was less than 1% in
data set comparisons and unknown samples.
Therefore, this method can be a simple and af-
fordable way to design the appropriate shield
without using Monte Carlo simulations.

This study is focused on a particular glass
shield as an example. First, the accuracy of the
simulation was checked with the referenced
shield results. Next, a great dataset was gath-
ered through the simulations accomplished
using MCNPX2.6 code. Then, this dataset
was used to form input and target matrices in
MATLAB. Also, there was a comparison be-
tween the results from the simulation and the
network. Finally, the samples which the corre-
sponding data were not learned to the machine
before, were used to assess the ANN perfor-
mance. The results were compared with those
of the simulations.

There is a significant correlation between
the results of the considered network and
simulation. The deviation was less than 1% in
data set comparisons and unknown samples.
Therefore, this method can be a simple and
affordable way to design the appropriate
shield without using Monte Carlo simulations.

The dose was evaluated in the case of the
optimized weight fraction for 20 puCi source
intensity. In addition, considering the annual
dose limitation of 1 mSv for individuals, it
was tried to find the optimized dimension for
the sample to decrease the dose. For this pur-
pose, 8 samples with thicknesses of 1 to 8 cm
with steps of 1 cm were tested.

The trained network not only leads to ac-
ceptable results in a known dataset of given
input and target but also is used for unknown
samples out of the range of the training da-
taset. In addition, the network precision was
considered with some randomly unknown
samples. The deviation between the predicted
results from those of the MCNPX simulations
was less than 2%. The results emphasize that
the final optimum shield can be obtained based

on the prepared dataset without conventional
calculations based on the MCNPX code. It is
worth mentioning that the present results can
be extended to the simulation of more compli-
cated models of the arrangement of the source,
the shield, and the detector considering a wide
span of shield materials. Also, it can be inves-
tigated for other sources or mixed radiation
fields. The present results are encouraging and
the mentioned problems offer new ways to ac-
complish more research on the performance of
the ANN in optimization studies.
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