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ABSTRACT

Background: Diabetic Retinopathy (DR) is one of several retinal microvascular
complications of Diabetes Mellitus (DM), a disease of increasing global prevalence.
However, early detection and treatment can reduce or even prevent DR progression. In
this work, Deep Learning (DL) techniques are used to grade DR from an early stage
using either binary or multiclass classification as a clinical aid to help reduce the risk
of patient vision loss.

Objective: The primary objective of this research is to develop a low-cost, fast,
and accurate automated system using DL for the early detection and classification of
DR from retina fundus images.

Material and Methods: This cross-sectional study employed three DL models,
namely Convolutional Neural Networks (CNNs), decision tree, and logistic regres-
sion, to categorize three distinct clinically graded datasets, namely the Iraqi dataset,
the Indian Diabetic Retinopathy Image Dataset (IDRiD) and the Eyepacs dataset,
according to DR severity.

Results: Evaluation of the DL model results showed that logistic regression
emerged as the most effective, where accuracies of 99%, 99.3%, and 99.4% were
achieved for the Iraqi, IDRiD, and Eyepacs datasets, respectively. Conversely, the
decision-tree model achieved the lowest accuracy across the three datasets with 95.2%,
95.9%, and 96.0%, respectively.

Conclusion: The logistic regression model demonstrated the highest overall
accuracy of the three models for the classification of DR, with the Iraqi dataset with the
highest accuracy of the three datasets.
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Introduction

iabetes Mellitus (DM) is an increasingly prevalent disease that

can lead to microvascular malfunctions of the retinal blood ves-

sels, namely Diabetic Retinopathy (DR) [1-3]. The primary as-
sessment of DR is carried out via examination of fundus images by an
ophthalmologist. Early diagnosis of DR is crucial in mitigating the visual
impairment and diminished visual acuity associated with this condition.
Undiagnosed DR can progress to the subsequent severity levels; mild
non-proliferative, moderate non-proliferative, severe non-proliferative,
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and the most severe level, proliferative DR
[4-6]. Because of the increased number of dia-
betic patients coupled with the limited num-
bers of ophthalmologists globally, the devel-
opment of an automated system to detect and
grade DR would reduce the workload on cli-
nicians and improve patient prognosis. Auto-
mated detection of DR has received increasing
interest over the last two decades, especially
after the rise of Deep Learning (DL), which
eliminated the need to extract specific features
from diseased images manually [7].

A Convolutional Neural Network (CNN)
algorithm was used to detect very small lesions
on preprocessed and augmented data obtained
from the EyePacs dataset, after optimizing the
CNN architectures, which ultimately achieved
an accuracy of 95% [8]. Another study pro-
posed the extraction of blood vessels from the
fundus image requiring preprocessing steps,
namely image size normalization by scaling
and boundary removal, to gain an accuracy
of 74% [9]. Another study proposed a novel
approach for feature extraction, including vas-
cular area, exudate areas, and texture features
with the use of a Support Vector Machine
(SVM) [10]. Other studies [11-13] proposed
various comprehensive models that focused
on utilizing CNN to classify target lesions
within fundus images at different scales.

Priya Henry et al. [14] introduced thirteen
filters, such as smoothing and sharpening, to
enhance the Indian Diabetic Retinopathy Im-
age Dataset (IDRiD). The Gaussian, Median,
Wiener, Bilateral, and partial differential equa-
tion filters were utilized to enhance the detec-
tion performance of their algorithm, and out-
standing results were achieved. In a recent
study, Levi et al. [15] utilized the GoogL.eNet
CNN to identify and classify DR, achieving a
detection accuracy of 88% for binary classi-
fication. Salma et al. [16] suggested a CNN-
based technique for DR classification, utiliz-
ing both GoogLeNet and transfer learning.
The experiment categorized DR into three
levels: No DR, mild, and severe. The approach

achieved a sensitivity of 95% and specificity
of 96%. Whereas Lam et al. [17] employed
a CNN model for multi-classification of DR
severity levels and demonstrated an accuracy
of up to 93%. Further work was carried out
by Butt et al. [18] using a hybrid system in-
volving a CNN with a transfer learning algo-
rithm. Their technique showed an enhanced
technical performance; however, it achieved
an overall accuracy of 89.29%, which was
lower than previous studies. Kang et al. [19]
used four ophthalmic imaging modalities to
diagnose DR with a DL system. This work
showed a practical approach to diagnosing
DR with impressive accuracy results for the
four models as 98.4%, 97.7%, 96.7%, and
96.3%, respectively. In another investigation,
Adem [20] used a CNN built on DL methods
to classify retinal fundus images from the pub-
lic Kaggle dataset; there was a 75% accuracy,
95% specificity, and 93% sensitivity in DR de-
tection. Using four CNN techniques, Xu et al.
[21] used a similar method and classified DR
images from Kaggle with an accuracy of 94%.

The logistic regression model has been wide-
ly used in various fields to classify data objects
into groups. Our logistic regression technique
aimed to accurately characterize the relation-
ship between the target variable and predictor
factors, an approach, which was previously
used by Zhu et al. [22]. The decision tree was
a model to display classifiers and regressions.
As the name implies, this tree was made up
of a number of nodes and branches [23]. This
study focused on the three DL algorithms for
an automated system for early-stage diagnosis
of DR. Three DL algorithms were developed
and compared, namely CNN, Decision Trees,
and Logistic Regression. Each algorithm was
responsible for classifying fundus images into
different grades of DR. Additionally, three dis-
tinct datasets, namely IDRiD, EyePACS, and
a newly collected dataset (the Iraqi dataset),
which contained a large number of labeled im-
ages, were employed to evaluate the DR diag-
nosis. The comparison of these algorithms is
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a crucial aspect of the study to determine the
most effective method for DR classification.

Material and Methods

In this cross-sectional study, a novel DL
algorithm was implemented to automatical-
ly detect and classify fundus images of DR.
The algorithm was used to classify DR into
healthy, mild, moderate, severe, and Prolif-
erative Diabetic Retinopathy (PDR) according
to the Early Treatment Diabetic Retinopathy
Study (ETDRS) classification standards of se-
verity level as indicated in Figure (1). The DR
classes are described as follows: healthy indi-
cates a healthy fundus image without DR and
does not show any abnormality, such as mi-
croaneurysms or any other DR lesions. Mild is
the initial stage of Non-Proliferative Diabetic
Retinopathy (NPDR) of the disease. At this
stage, the only abnormalities detected in the
examinations are microaneurysms. In moder-
ate NPDR, dot blot haemorrhages or microan-
eurysms appear in at least one quadrant, with
or without cotton-wool spots, venous beading,
or intraretinal microvascular abnormalities.
Severe NPDR includes any of the following
cases; 20 or more intraretinal haemorrhages
(dot blot haemorrhages) in each of the four
quadrants, definite venous beading in 2 or
more quadrants, and prominent intraretinal
microvascular abnormality in one or more
quadrants. The term “4:2:1 rule” is used to re-
fer to these three points since they necessitate
the presence of abnormalities in at least four,

two, and one quadrants of the retina. PDR is
the highest level of the disease’s progression.
During this stage, the retina or optic nerve ex-
periences the growth of newly formed, deli-
cate, and abnormal blood vessels. These blood
vessels have the potential to leak, which can
impact the quality of vision. Examinations de-
tect either a clear presence of neovasculariza-
tion, pre-retinal, or vitreous haemorrhages.
After the initial collection of the Iraqi da-
taset and downloading of the IDRiD and
EyePACS datasets, all three datasets were first
preprocessed to enhance the images as an in-
put to the DL algorithm, including; cropping,
resizing, and contrast enhancement. DL algo-
rithms based on three different models (CNN,
Decision Tree, and Logistic Regression) were
applied to classify the images in all three da-
tasets, as explained below. The classification
results of the algorithms were assessed based
on the accuracy, precision, logistic loss, and
Area Under the Curve (AUC) [23]. These re-
sults were then compared with all other results
obtained from other datasets [24, 25] to iden-
tify the best performance of the classifier, as
shown in the block diagram in Figure (2).

Datasets

In this study, the three datasets used are de-
scribed below. Samples of used image data are
shown in Figure 3 as follows:

1. EyePACS dataset

The EyePACS dataset [24] contained 35000
images; a sample of each DR stage is shown

a b (¢ d e
Figure 1: Diabetic Retinopathy (DR) progression. This Figure describes the classification stages
a) is the normal eye, b) is mild (3-5 years), c) represents moderate (5-10 years), d) refers to

severe stage (10-15 years). b, ¢, and d) are also known as Non-Proliferative Diabetic Retinopathy
(NPDR). e) represents the Proliferative Diabetic Retinopathy (PDR) level.
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Iragi dataset

DR dataset

EyePacs dataset

IDRID dataset

1.cropping.
2. resizing.
3.Contrast

preprocessing

enhancements

1.resizing.
2.Contrast enhancements

1. resizing.
2. Contrast enhancements

DL algorithms

1. Decision Tree

‘| 2. Logistic Regression. |+

3. CNNs.
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Specificity, AUC and
Confusion matrix

Classification
results

Figure 2: General workflow chart for Diabetic Retinopathy (DR) detection: Dataset selection,
preprocessing, and Deep Learning classification. It illustrates the main steps of the method,
beginning with dataset selection followed by preprocessing, including image cropping, resiz-
ing, and contrast enhancement. Subsequently, three Deep Learning (DL) systems (Convolutional
Neural Network (CNN), Decision Tree, and Logistic Regression) were chosen for the training and
classification of DR. The results were then statistically analyzed using evaluation metrics such as
accuracy, sensitivity, specificity, Area Under the Curve (AUC), and the confusion matrix.

Class0
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Class 2

Class 3

Class 4

Class 0

Class 1
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Figure 3: Sample of the dataset with Diabetic Retinopathy (DR) shows the main classification
grades: class 0 represents the normal or healthy image; class 1 represents the mild stage of
Diabetic retinopathy (DR); class 2 represents the moderate stage; class 3 shows the severe non-
proliferative DR; and class 4 shows the last Proliferative Diabetic Retinopathy (PDR) stage for: (a)

EyePACS dataset [24]. (b) IDRiD dataset [25]. (c) Iraqgi dataset [26].
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in Figure (3a). The dataset contained left and
right eye images from each patient with an im-
age size of 1024x1024 pixels in jpeg format.
The dataset exhibited a significant imbalance,
with 65,343 healthy images, 6,195 mild class,
13,153 moderate class, 2,087 severe class, and
1,914 images belonging to the PDR class.

2. IDRiD dataset

The IDRiD dataset was recently published
[25] and consisted of 413 images. These im-
ages were divided into two categories: patients
with and without signs of DR. The images had
a size of 4288x%2848 pixels in jpeg format.
The dataset included 135 images classified as
healthy, 20 as mild, 142 as moderate, 63 as se-
vere, and 53 as PDR. Figure (3b) displays a
sample of the IDRiD images.

3. Iraqi dataset

This dataset was collected at the main oph-
thalmology teaching center in Baghdad, where
patients from all cities in Iraq were admitted.
It consisted of 700 retinal fundus images that
were collected and labeled under the supervi-
sion of specialized ophthalmologists. The data
was then classified according to ETDRS stan-
dards into five stages depending on the sever-
ity level of DR. This dataset included 153 im-
ages classified as healthy, 59 as mild, 304 as
moderate, 99 as severe, and 85 as PDR. The
collected images were stored in the hospital
server and anonymized for teaching and re-
search after obtaining ethical permission [26].
The images were captured with a resolution of
3507x%2480 pixels and stored in jpeg format. A
sample of this dataset is shown in Figure (3c).

Preprocessing

Preprocessing of the three sets of data was
used to standardize image properties delivered
to the DL algorithms. The preprocessing fo-
cused on resizing and contrast enhancements
to make foreground details in fundus images,
such as the optic disc, blood vessels, and le-
sions more recognizable and easier to identify
by distinguishing them from the background.
This aimed to reduce the time required for

DR image training and classification test-
ing. Preprocessing steps were performed
using R2021b MATLAB software with im-
age processing code and enhancements tech-
niques. The EyePACS dataset was resized
from 1024x1024 pixels to 332x314 pixels, as
shown in Figure 4 (a and b). The IDRiD data-
set was resized from 4288x2848 to 753%500
pixels, as shown in Figure 4 (¢ and d). The
Iraqi dataset was cropped and then labeled
before resizing from 3507%2480 to 320x314
pixels. The contrast is enhanced using adap-
tive binarization, as shown in Figure 4 (e, f,
g, h), by converting the fundus images into
gray binary images. This method is effective
in enhancing and distinguishing the important
features of DR, which can have varied illumi-
nation in fundus images. Adaptive binariza-
tion has many advantages, such as handling
nonuniform illumination, reducing the shad-
ows and highlights on the images, and also en-
hancing the local contrast, which is essential
in identifying small and significant changes in
the image features. However, it also has some
disadvantages, such as potential data loss and
computational intensity that can be reduced
or handled through parameter optimization
to preserve important features. They can also
maintain the balance between enhanced fea-
tures and preserved necessary information.

Deep Learning System

A DL algorithm based on three models was
used to analyze the datasets and then trained to
identify and classify features based on specific
clinical criteria. Feature selection and train-
ing were done using pooling and convolution
operations over multiple layers in the network
architecture. In the DL-based CNN model, the
initial layers were used for feature extraction,
specifically through the use of convolution
layers. This process produces a feature map
that identifies corners and edges in the images.
To prevent overfitting during the classification
stage, a dropout layer was used to reduce the
size and complexity of the model. A dropout

J Biomed Phys Eng
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(e)Actual images.

(f) Truncated image.

(g) Resized image.

(h) Contrast enhancement.

Figure 4: Diabetic Retinopathy (DR) image enhancement steps. (a) The EyePACS resized image
(b) The same image with contrast enhancement. (c) The IDRiD resized image. (d) The same im-
age was enhanced by adaptive binarization. (e) Iraqi dataset, including the original unenhanced
DR image, (b) the cropped image (c) the resized image (d) the contrast-enhanced image.

rate of 0.01 is used in the proposed model to
achieve the best accuracy. The activation func-
tion was an important parameter in the CNN
model as it determined, which information
should be passed to the next layer and which
was less useful. The Rectified Linear Unit
(ReLU) activation function was utilized due to
its common usage in machine learning mod-
els. It was responsible for processing weighted
inputs and helping deliver an output, and was
typically used in the hidden layers of a neural
network to add non-linearity. The softmax ac-
tivation function was typically used in the last
layer of a neural network to predict the class of
an input image. The Hyperbolic Tangent func-
tion (tanH) gave better performance for multi-
layer neural networks while sigmoid functions
introduced non-linearity to the model and

helped the algorithm learn complex functions,
as shown in Figure (5).

This research used the Iraqi dataset of DR
patients and classified them to distinguish and
grade DR. The results were then compared to
the EyePACS and IDRiD datasets. Three DL
algorithms were used to classify DR into five
grades. These algorithms, the CNN, decision
tree, and logistic regression model, were ap-
plied to the datasets. The decision tree algo-
rithm splits the data into nodes based on class
purity, while the CNN model is a Multi-layer
Perceptron (MLP) algorithm capable of learn-
ing both linear and non-linear models. The
CNN model, with a hundred neurons in the
hidden layer, used the ReLU as an activa-
tion function and the Stochastic Gradient De-
scent (SGD) as an optimizer with maximum

J Biomed Phys Eng
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iterations of 250 and a learning rate of 0.01.
On the other hand, logistic regression is a sta-
tistical method to describe the relationship be-
tween a dependent variable and one or more
independent variables.

Evaluation metrics [27] were utilized to as-
sess the efficacy of the DL models for classi-
fication tasks. These metrics include accuracy,
sensitivity, specificity, and the confusion ma-
trix. The evaluation was based on finding True
Negative (TN) instances, which are the cases
correctly diagnosed as healthy. The True Posi-
tive (TP) instances indicate patients correctly
diagnosed with DR. False Negative (FN) de-
notes cases that were incorrectly identified
as healthy, while False Positive (FP) repre-
sents cases of patients mistakenly diagnosed
as healthy individuals. The confusion matrix
serves as a tabular representation of correct
and incorrect predictions.

Accuracy reflects the proportion of cor-
rectly predicted observations, encompassing
both positive and negative outcomes, relative

to the total observations. The confusion ma-
trix serves as a concise summary of predictive
outcomes, detailing TP, TN, FP, and. Each row
in the matrix corresponds to the actual class,
while each column represents the predicted
class. The matrix’s diagonal indicates correct
predictions, while off-diagonal elements sig-
nify errors. Furthermore, the AUC value was
calculated to assess the classifier’s capability
to distinguish between different classes [27].

Results

The accuracy, AUC, specificity, and sen-
sitivity of the classification on the Iraqi da-
taset using different models are shown in
Table (1). The highest classification accuracy
was found in the logistic regression (99%),
while the lowest was seen in the decision tree
model (95.2%).

The confusion matrix of the decision tree
model for the Iraqi dataset showed that 118
images were correctly classified as healthy, 55
as mild, 298 as moderate, 87 as severe, and 77

@ convolution + RelU
@ max pooling

@ fully Connected + RelU
@ softmax

Figure 5: Schematic representation of Convolutional Neural Network (CNN) architecture shows
the sequence of four filtration layers (convolutional layer, rectified linear unit layer, maxpooling

layer, fully connected layer, and SoftMax layer).

Table 1: Evaluation results of classification performance using the Iraqgi dataset and the three

models.
Model Accuracy (%) AUC Specificity Sensitivity
Decision tree 95.2 0.998 0.977 0.953
CNN 98.5 0.991 0.993 0.985
Logistic regression 99 0.993 0.994 0.990
CNN: Convolutional Neural Network, AUC: Area Under Curve
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as PDR. Furthermore, for the CNN model, it
showed that 119 images were correctly clas-
sified as healthy, 56 as mild, 301 as moderate,
97 as severe, and 81 as PDR. For the logistic
regression model, 118 images were correctly
classified as healthy, 57 as mild, 303 as moder-
ate, 98 as severe, and 84 as PDR, as shown in
Figure 6 (a, b, c).

The accuracy, AUC, specificity, and sensi-
tivity for the EyePACS dataset using decision
tree, CNN, and logistic regression are shown
in Table (2). The confusion matrix of the
decision tree model for the EyePACS dataset

Healthy 118 1 |

Mild 2 55 1 1

Modrate 2 3 1

True Class

PDR 1 6 77 1

Sever 5 7 87

Mild Modrate PDR

Predicted Class

(@)

Healthy Sever

showed that 167 images were correctly clas-
sified as healthy 24 as mild, 153 as moderate,
80 as severe, and 50 as PDR. For the logis-
tic regression model, it showed that 168 im-
ages were correctly classified as healthy, 24 as
mild, 157 as moderate, 85 as severe, and 57 as
PDR. For the CNN model, it showed that 166
images were correctly classified as healthy, 20
as mild, 154 as moderate, 84 as severe, and 57
as PDR, as shown in Figure 7 (a, b, c).

The accuracy, AUC, specificity, and sen-
sitivity for the IDRiD dataset using decision
tree, CNN, and logistic regression are shown

Healthy 119 1

Mild 1 56 2
]
o -
> Modrate 1 1 1
=

PDR 1 81

Sever 2 97

Healthy Mild  Modrate  PDR
Predicted Class

(b)

Sever

118

()

Healthy

Mild 57

(&)

Modrate

True Class

PDR

1 84

Sever

1 98

Healthy  Mild

Modrate  PDR Sever

Predicted Class

(c)

Figure 6: Confusion matrixes of the Iraqi dataset. (a) using the decision tree model. (b) by
Convolutional Neural Networks (CNN) model. (c) with Logistic Regression. True class data were
collected based on the physician’s diagnosis. (PDR: Proliferative Diabetic Retinopathy)

Table 2: Performance evaluation of EyePACS dataset with three models.

Model Accuracy (%) AUC Specificity Sensitivity
Decision tree 0.96 0.997 0.988 0.961
CNN 0.974 0.998 0.974 0.974
Logistic regression 0.994 0.993 0.998 0.994
CNN: Convolutional Neural Network, AUC: Area Under Curve
VII
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in Table (3). The confusion matrix of the deci-
sion tree model of the IDRiD dataset showed
that 167 images were correctly classified as
healthy, 24 as mild, 153 as moderate, 80 as
severe, and 50 as PDR. For the logistic regres-
sion model, it showed that 168 images were
correctly classified as healthy, 24 as mild, 157
as moderate, 85 as severe, and 57 as PDR.
For the CNN model, it showed that 166 im-
ages were correctly classified as healthy, 20
as mild, 154 as moderate, 84 as severe, and
57 as PDR, as shown in Figure 8 (a, b, c).
Table (4) summarizes the performance of the

Healthy 1

Mild 1 24

w

Z

) ate

° Modrate 2 2

=

=
PDR 1 1 2 50 4
Sever 1 2 2 1 80

Healthy Mild  Modrate PDR Sever
Predicted Class

three models with the three datasets.

Discussion

The quality of life for diabetic patients can
be significantly impacted by DR due to the
resulting visual impairments and progressive
development of DR symptoms. The shortage
of highly skilled ophthalmologists combined
with the high cost-effectiveness of eye screen-
ing methods will encourage the creation and
use of artificially intelligent systems like DL
models for early DR diagnosis and decrease
the progression or manage the symptoms of

Healthy

Mild 24 1
»
|9
» Modrate 157
=
=

PDR 57 1
Sever 1 85

Healthy  Mild  Modrate PDR Sever
Predicted Class

(b)

(a)
Healthy
Mild 2 20

Modrate 1

True Class

154 1 1

PDR

57 1

Sever 1

1 84

Healthy Mild Modrate PDR Sever
Predicted Class

()

Figure 7: Confusion matrix of EyePACS (a) using decision tree model. (b) by logistic regres-
sion model. (c) with Convolutional Neural Network (CNN) model. (PDR: Proliferative Diabetic

Retinopathy)

Table 3: Performance evaluation of the algorithm based on three models using the IDRiD.

Model Accuracy (%) AUC Specificity Sensitivity
Decision tree 95.9 0.991 0.960 0.961
CNN 98.8 0.996 0.995 0.988
Logistic regression 99.3 0.997 0.998 0.999
CNN: Convolutional Neural Network, AUC: Area Under Curve
J Biomed Phys Eng



Noor Ali Sadek, et al

Healthy 1
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© Modrate| 2 2 153

=
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Healthy Sever
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E
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o
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Healthy Mild Modrate PDR  Sever
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(b)

Healthy

Mild 2 20
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(©)

Figure 8: Confusion matrices of IDRID, using (a) decision tree model, (b) logistic regression
model. (c) Convolutional Neural Network (CNN) model. (PDR: Proliferative Diabetic Retinopathy)

Table 4: Summarization of the results of the three datasets with the three models.

. Iraqi dataset
Deep learning

Accuracy

Datasets
Eyepacs dataset IDRID dataset
= = > = =
2 2 g 8 z & g
2 3 =< 3 2 3 =
[} % 5] [} o
9] ) < n )

> = =
models 8 = S o
> ‘» © -
3 5 a <
< n n
Logistic regression 099 9090 0.994 0.993
CNN 0.985 0.985 0.993 0.991

0.952 0.953 0977 0.998
CNN: Convolutional Neural Network, AUC: Area Under Curve

Decision tree

DR. Therefore, the progress in the model ar-
chitecture has resulted in the utilization of
larger databases to test and evaluate these
technologies in the diagnosis and grading.
The logistic regression, decision tree, and
CNN models were used in this work and rep-
resent baseline models for the classification of
DR because of their architectural diversity and
simplicity. When interpretability, simplicity,

0994 0.964 0.998 0.993 0.993
0974 0974 0974 0998 0.988
0.96

0.999 0.998 0.997
0.988 0.995 0.996
0.961 0.960 0.991

0.961 0.988 0.997 0.959

and efficiency are required, logistic regression
performs well and is ideal for datasets and cir-
cumstances requiring immediate insights. For
clear decision-making processes and the cap-
ture of non-linear relations, decision trees are
ideal and useful for analyzing the relevance of
features. Simple CNNs work well for direct
image analysis since they can quickly identify
intricate patterns in large datasets and perform

J Biomed Phys Eng
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well in image classification applications [27].
The aforementioned models based on DL were
selected for this research because of their reli-
able performance.

Logistic regression provides clear insights
into which features influence the outcome,
making it more interpretable than decision
trees and CNN models. Furthermore, the lo-
gistic regression model performs well even
with smaller datasets, unlike CNN models
that need larger datasets for effective train-
ing [27]. Logistic regression requires well-
engineered features to perform well through
the image preprocessing step. While all three
models have these benefits, it is crucial to re-
member that the model selected will rely on
the particular needs and limitations of the
DR classification task, such as the size and
makeup of the dataset, and the requirement for
interpretability.

Based on the findings, the three datasets
could yield impressive predictions when they
underwent identical pre-processing proce-
dures. In terms of classification performance
for DR grading, the Iraqi dataset has shown
promising results when compared to large da-
tasets with different image sizes and resolu-
tions, such as the EyePACS dataset because of
its diversity and good quality images in addi-
tion to its correct labeling. The aforementioned
reasons made the classification of the DR data
using CNN, decision tree and logistic regres-
sion more valuable with results approaching
real-world clinical diagnosis.

The logistic regression model exhibited su-
perior performance across various datasets
compared to prior studies [27-29] utilizing the
preprocessed Pima Indians Diabetes (PID) da-
taset. In the current study, employing the Iraqi,
EyePACS, and IDRiD datasets resulted in ac-
curacies of 99%, 99.4%, and 99.3%, respec-
tively, overtaking the 97% accuracy achieved
with the PID dataset and its logistic regression
model incorporating Principal Components
Analysis (PCA) techniques [27]. Our pro-
posed enhancement technique significantly

contributed to this improvement in predictive
capability. Specifically, for the Iraqi dataset,
logistic regression demonstrated an accuracy
of 99%, an AUC of 99.3%, a specificity of
99.4%, and a sensitivity of 99%, as indicated
in Table 2. Likewise, for the EyePACS data-
set, logistic regression yielded outstanding
classification results with a 99.4% accuracy, a
99.3% AUC, a 99.8% specificity, and a 99.4%
sensitivity, as shown in Table 3. Similarly,
Table 4 highlights the strong performance of
the logistic regression model on the IDRiD da-
taset, with metrics of 99.3% accuracy, 99.7%
AUC, 99.8% specificity, and 99.9% sensitiv-

1ty.

Conclusion

Due to the increasing global frequency of
DM, there is a growing need for developed
algorithms to aid clinicians in the early detec-
tion, diagnosis, and classification of DR. In
this work, we first dealt with the preprocess-
ing of all datasets used (Iraqi, EyePACS, and
IDRiD), which in turn impacts on maximizing
the functionality of the DL system and under-
scores the importance of data preparation in
maximizing the model functionality. Second,
we compared three different DL models for
their ability to classify DR with three different
datasets to predict the best model according
to the model performance, namely accuracy,
precision, AUC, and sensitivity. The used da-
tasets were specific to particular populations,
which may limit the generalizability of the
findings to other demographic groups. Also,
the model needs clinical validation to be reli-
able and more robust in real-time clinical con-
ditions. All of the DL models show a promis-
ing result for the ability to learn features that
are required for DR fundus image classifica-
tion. The logistic regression shows an optimal
result of DR classification with high accuracy,
precision, sensitivity, and confusion matrix for
all of the datasets. Dataset quality and balance
are very important and that is why the Iraqi
dataset demonstrated greater accuracy than
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other datasets in the disease classification of
this work. The future direction for this work
is to generate an optimization procedure with
a multi-model setup and other enhancement
techniques to have a comprehensive system
for DR classification and also to collect new
datasets for early diagnosis of pediatric DR.
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