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ABSTRACT

Real-time data collection, sharing, and analysis of health-related information are made
feasible using the Internet of Things (IoT) in the healthcare field. IoT could transform
patient care, enhance clinical results, and optimize healthcare operations by integrat-
ing remote monitoring, automation, and data-driven decision-making. Determining
the blood type is essential for safe blood transfusions, organ transplant compatibility,
and preventing immunological responses. Additionally, the ABO blood group system
prediction supports research on associations between blood types and various medical
conditions, such as susceptibility to infections, cardiovascular diseases, and clotting
disorders. Antigens (A and B) and the Rhesus (Rh) factor (+ or -) are usually used
to determine blood grouping. By combining known antibodies with blood samples,
the blood group can be examined by the agglutination reactions through image pro-
cessing techniques. In this work, we proposed an intelligent portable blood analyser
for blood type prediction and determination using an loT-based system. The blood
group identification and detection in blood samples is performed with a fabricated
simulation device using a 3D Printer and acrylic materials. This system determines a
solution using the adaptive Hough transform algorithm and provides the highest level
of efficiency and accuracy in blood group identification and counting. Thus, the pro-
posed system lowers the possibility of transfusion-related allergic responses and stores
precise outcomes that exclude human-made errors, enabling us to instantly determine
a person’s blood type.
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Introduction

he Internet of Things (IoT) in healthcare uses interconnected

devices, sensors, and software to collect, share, and analyze

real-time health data for patient care operations [1]. The major
applications include Remote Patient Monitoring (RPM) through wear-
able devices for chronic disease management, smart hospital systems
with connected medical equipment and asset tracking, and medication
management with smart pill dispensers [2]. IoT also enhances emer-
gency care through data-enabled ambulances, supports predictive ana-
lytics for preventive care, and improves elderly care with fall detec-
tion systems. The authors Li and Guo [3] made a comprehensive study
on the advancements and methodologies in blood group testing. The
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significance of precise blood type is high-
lighted by the researchers for safe organ trans-
plants, blood transfusions, and a knowledge of
genetic heredity. The traditional blood group-
ing system needs a sample of blood smear in
the slide. The blood group is indicated through
ABO typing and Rh typing. A blood sample
is combined with antibodies with type A and
type B blood in ABO typing to observe the
blood cells clump, indicating a reaction [4].
After that, the serum is combined with known
type A and type B blood for back typing,
which looks for the presence of antibodies.
Similar to this, Rh typing examines the cell
protein surface on red blood cells. These tests
together determine a person’s blood type [5].
High-resolution pictures of blood smears or
blood samples placed on a slide are captured
by devices used in macro or microscopic im-
aging. These images are then processed for
both blood group determination and blood
cell count [6]. The distinct clumping patterns
that emerge during the antibody combination
reactions can be identified by image process-
ing systems [7]. These patterns can be used to
identify and categorize the blood group using
algorithms, such as segmentation, threshold-
ing, and edge detection [8]. By extracting fea-
tures, such as cell shape, size, and colour from
the segmented blood cells, the system can dif-
ferentiate between different types of cells [9].
It is possible to classify and count the vari-
ous cells, such as red blood cells, white blood
cells, and platelets, using machine learning
methods (e.g., Support Vector Machines and
Convolutional Neural Networks) [10].
Modern blood group typing techniques were
examined by authors Mahmood [11] empha-
sizing improvements in speed, accuracy, and
convenience for early prediction. Traditional
serological methods, such as the microcolumn
gel method, remain widely in clinical settings
due to their precision in ABO and Rh typing.
However, emerging technologies like paper-
based and microfluidic testing offer significant
improvements for point-of-care diagnostics.

Chomean et al. [12] proposed a rapid paper-
based test for determining ABO and Rh blood
types in under 10 minutes, using wax-printed
channels on filter paper. This method is highly
accurate, lightweight, and portable, making it
ideal for quick bedside testing or emergen-
cies. Dye-assisted paper-based methods and
microfluidic systems also enhance speed and
sensitivity, especially in detecting rare blood
types [3].

A novel approach for the automated identi-
fication and categorization of blood types us-
ing a combination of machine learning algo-
rithms and image processing techniques was
proposed by the author Mahmood [11]. The
blood sample images were captured under
controlled conditions, and these images were
subjected to various pre-processing tech-
niques for noise reduction. The shape, colour
intensity, and texture features were extracted
from the processed images, and the machine
learning model was applied to the extracted
features to categorize blood samples into the
appropriate groups. Mahmood et al. proposed
a software-based blood group determination
approach using a Graphical User Interface
(GUID) in MATLAB [13]. Rosales and De
Luna [14] developed a computer-based meth-
od for identifying blood types using a combi-
nation of image-processing techniques and a
machine-learning algorithm.

The main objective of this research is to de-
velop an automated system for blood group
determination using image processing tech-
niques integrated with IoT to streamline the
diagnostic process. By implementing the uni-
versal donor principle, the proposed method
eliminates the need for traditional transfu-
sions, lowers the risk of transfusion reactions,
and stores results without human errors.

Technical Presentation

Overall Workflow
The blood cell smears were collected by
the trained professionals from the patients’
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fingerprints and reagents were added with
the following standard procedure from COS-
MOPOLIS Hospital, Ashok Pillar. The pro-
posed loT-enabled imaging system identi-
fies the patient’s blood group automatically.
The 40x to 1000x magnification microscopic
camera is connected to an Arduino UNO for
motor actuation and a stepper motor for the
camera’s forward and backward movement.
The slide is placed in the blood slide holder
with an LED (Light-Emitting Diode) Dis-
play. The camera is connected to Raspberry
PI, and the blood smear images were stored
in the computer for further processing. MAT-
LAB (Matrix Laboratory) is a programming
and simulation environment widely used in
engineering, scientific computing, and image
processing applications. It provides built-in
functions and toolboxes for image processing,
machine learning, and data analysis. OpenCV
(Open Source Computer Vision Library) is
a high-performance library for real-time im-
age processing and computer vision applica-
tions. Because of their speed and versatility,
both are frequently utilized in medical imag-
ing. The features extracted for blood group

Arduino UNO

O

Stepper Motor

A
[ P2 N

Microscopic
camera

identification and detection are performed
using MATLAB, and Open CV software, and
the blood samples are compared using image
processing, and the results of testing can be
obtained through the simulation software. The
final result after the identification of the blood
group using our proposed method will be dis-
played in the 16x2 LCD (Liquid Crystal Dis-
play) alphanumeric display. Figure 1 shows
the overall block diagram for the automatic
prediction of the blood group from the blood
smear images. The blood group is predicted
and displayed with an alphanumeric LCD
connected to Raspberry Pi.

Image Processing Techniques

The input blood smear image is converted
to a grayscale image and then to the colour
space image in blue colour. The image is then
binarized with a default threshold of 0.5, and a
second binary image is created using an adap-
tive threshold determined by a grey threshold
[15]. A Niblack thresholding method is ap-
plied to the binary image, and the complement
of the result is obtained [16]. Morphological
operations are performed with the threshold

Raspberry PI

NOW PROCESSING ......
( PLEASE HOLD )

LCD Display

:.g ’
=
Blood Sample plate holder
with LED display

Figure 1: Overall Workflow Diagram for the Automatic Prediction of the blood group from the

blood smear images
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image. The image is eroded using a disk-
shaped structuring element and then dilated.
After dilation, the image undergoes morpho-
logical closing followed by morphological
opening [17]. The connected components in
the processed binary image were identified,
and the number of objects was determined.
The areas of the regions are calculated, and
the centroids of the objects are extracted.
The centroids are then plotted on the image.
Figure 2 shows the process flow diagram of
blood group identification from the blood
slide images.

Adaptive Hough’s Transform
In computer vision and image analysis,
the Hough Transform is an effective tool for

Process Flow

Corresponding
Output Images

Input image

Preprocessing

Thresholding

Morphelogical
Operations

Finding
Centroids

Hough*s tranzform

Figure 2: Process flow chart for finding the
centroids in blood smear images for blood
group identification

identifying shapes in an image, especially
ellipses, circles, and lines [18]. It creates pa-
rameter space by dividing the complex prob-
lem into a set of simpler problems to identify
the exact shape. The features were found by
mapping the points of the image space into
the parameter space [19]. Hough’s Transform
adopts the parametric representation of the
line equation, in which n is the line’s slope,
and z is its y-axis intercept. There are several
problems with the above line equation, partic-
ularly when working with vertical lines where
the slope m becomes infinite.

The mathematical formulation for the
Adaptive Hough Transform typically follows
the principles of the standard Hough Trans-
form but adds an adaptive mechanism to op-
timize the process. For handling all possible
lines, we use a different parameterization
based on the polar coordinates [20]. The per-
pendicular distance between the line and the
origin is denoted by p. In relation to the x-
axis, 0 is the angle formed by the normal, or
perpendicular line, to the line. This polar form
describes a line in the image space (a, b) us-
ing two parameters, p, and 0, rather than the
slope and intercept. We can compute a range
of potential lines that could pass through a
given point in the image space by altering 0,
and then calculate p for each 0 [21]. In the p-0
parameter space, each of the image’s compo-
nents (a,, b)) represents a sinusoidal curve.
Each point on this curve represents a potential
line that passes through (a, b)) in the image
space. Let H (a, b ) be an accumulator array,
and H(a, b )=0 for all (a, b ). For each edge
point (al,b',¢?),

¢=h/ (1)
a =a'tr ' cos(h’) )
b =br 'sin(h’) 3)
H(a_ b )=H(a_b )+1 (4)

The ‘vote’ for all the possible (p,0) pairs
along this curve is found by incrementing the
corresponding bins in an accumulator array.

Figure 3 shows the algorithm for separating
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Begin
Step 1: Initialize Variable » as an index for the place array
Step 2: Initialize Anti a, Anti b, and Anti c to 0 for counting different regions
Step 3: Initialize place = zeros(numel(s), 2, n);
Step 4: For each element in the s array
k=1 to numel(s)
Step §: Retrieve Max and Min Values
Set maxv to result{k.2} (maximum value)
Set minv to result{k,3} (minimum value)
radius = maxv - minv
Step 6: If (n=1) assign the centroid value from the result as,
place(n,1) = Result.Centroid(k)
Step 7: Increment n by 1 and Classify the Centroid into Regions:
If Centroid(k) is <= 100
Increment Anti a by 1
Else if Centroid(k) is > 100 <= 310
Increment Anti b by 1
Else if Centroid(k) is > 310 and < 500
Increment Anti ¢ by 1
End for Loop
End

Figure 3: Algorithm for finding the centroids and Separating Antigens in blood smear images
using Hough'’s transform

antigens using Hough’s transform. - , Table 1: Calculated Threshold Levels for
After processing all edge points in the im- Eight different Blood groups and the anti-

age, the accumulator will contain peaks at gen values of a, b, and c for determining the
(p,9) values, where many lines intersect, i.e.,

; blood group
these peaks represent strong candidates for
lines in the image [22]. After the voting pro- Blood Threshold Anti Anti Anti
cedure, the peaks in the accumulator array in- Group Level (¢) a b ¢

dicate the most likely parameters (p,0) for the
lines in the image. By detecting the peaks in
the accumulator array that correspond to the AB Positive  0.3294-0.5843 >-1  >1 >1
most prominent lines. These peaks correspond APositive  0.3255-0.5098  >1 1 >1
to the strongest candidate lines, which can B Positive  0.3176-04706 1 >1 >1
be extracted and drawn back onto the origi-

O Positive  0.2981-0.7275 1 1 >1

nal image [23]. The maximum and minimum O Negative 0.2902-0.5765 1 1 1
points were identified for separating antigens, AB Negative 0.2511-0.5804 >-1 >0 1
and the ceqtroid was identified from the cal- ANegative  0.2902-0.8569  >1 1 1
culated radius [24]. Table 1 shows the thresh- B Negative 03255-05882 1 v 1

old levels for 8 different blood groups and the
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antigen values for determining the blood group.
Figures 4 (a) and (b) show the model de-
signed and fabricated at the Department of
Production Technology, MIT Campus, Anna
University for blood group identification.

Results

This section summarizes the

system’s

experimental results of the automated blood
group identification system with the results
of 303 participants. The provided values
correspond to the results of analyzing 303
blood smear images after converting them
to grayscale and applying a threshold of 0.5.
Figures 5(a) and (b) show the scatter plot of
the predicted blood groups from blood slides

(b)

Figure 4: Fabricated device for blood sample analysis and identification of blood group from
blood smear images (a) Experimental setup for blood group prediction from blood slides (b)
LCD (Liquid Crystal Display) Display in the fabricated device showing the predicted blood group

using Hogue’s transform.

1.0

0.8

Level

04{ ™

0.2 T T T T

Blood Group

(a)

Level

1.0
A Positive
4 Negative,
A
0.8 -
A
0.6 A
A A
tA? ® A A‘A A
lh‘ A f A ‘A‘A “‘ &
A dy
::ﬁ':;a**g S adh oLl
A A
ah A
‘ P s Ay
A
0.2
Positive /Negative
AB | 0 | A | B
Blood Group
(b)

Figure 5: Scatter plot of calculated threshold level for 303 blood smear images (a) Identified
blood group for the blood smear images and their corresponding threshold level (b) Rh factor
for identified blood group with their threshold levels.
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using a fabricated device. Figure 5(a) shows
the scatter plot of detected blood groups
and their corresponding calculated threshold
level. Figure 5(b) shows the scatter plot of
detected blood groups with Rh factor for the
determined blood group and their calculated
level of threshold for each blood group.
Figure 6 shows the distribution of antigen
‘a’, ‘b’ for blood group type and antigen ‘c’
for determining the Rh factor of the blood
group. Figure 6(a) shows the kite plot of the
antigens separately. From the kite plot, we
infer the antigen ‘c’ value is standardized to
zero for Rh negative, and Figure 6(b) shows
the scatter plot of antigens a, b, and ¢ for 303
blood smear images. The range of antigen ‘a’
is between 0 to 30, antigen ‘b’ is between 1
to 45, and antigen ‘c’ has a cluster of values
between 1 to 10 and ranging up to 60.

Discussion

The grayscale conversion simplifies the im-
age data by reducing the colour information to
a single intensity value for each pixel, which
makes image analysis more efficient. Thresh-
olding, in this case at 0.5, means that pixels
with intensity values greater than 0.5 are

l I| Anti-a
Anti-c 4 U-'»'I- i ol } _‘Ant!-

TII""I N L Anti-¢
I

1]

=

w -

241 H*F

=

s

<

0 50 100
Image Number

(a)

150 200 250 300 350

considered foreground (e.g., part of a cell or
region of interest), while those below are con-
sidered background. Only 5 participants have
images with intensities below 0.3, indicating
that these images are mostly dark or have low
contrast. This could represent images, where
little cellular material is visible, possibly due
to poor staining, improper sample preparation,
or a large amount of background with few dis-
tinguishable cells. A total of 158 participants
has intensities between 0.3 to 0.4, suggesting
that the majority of images have relatively
low-intensity values, but are not completely
dark. In blood smear analysis, this could in-
dicate that while cells or regions of interest
are visible, they may not be well-contrasted or
well-separated from the background. A total
of 100 participants have images with intensi-
ties between 0.4 to 0.5, indicating a moder-
ate level of contrast, with better distinction
between cells and background compared to
the lower intensity range. These images likely
show clearer cell structures, though they may
still be somewhat dim. Also, 25 participants
have intensities between 0.5 to 0.6, which
suggests that only a small fraction of the im-
ages have high contrast or intensity, making

60 Mean =1 SE .
+ Anti-a R
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Figure 6: Antigen range distribution for input blood smear images (a) Kite plot separating
Antigen a, b, and c (b) Scatter plot of images (mean * standard error) after applying Antigen ‘a’,

‘b’ and ‘c’.
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the cells or regions of interest stand out clear-
ly. Such images may be easier to analyze be-
cause of the distinct separation between cellu-
lar material and background. The majority of
the participants fall within the threshold range
between 0.3 to 0.6. Only 2 participants have
threshold intensities above 0.6, representing
their blood smear images are likely to be very
bright, making the cellular details highly vis-
ible but potentially causing exaggeration or
saturation.

Conclusion

Patient care and healthcare operations are be-
ing revolutionized by the IoT, which employs
networked devices, sensors, and software
to acquire, exchange, and analyze real-time
health data. For safe blood transfusions, organ
transplant compatibility, and immune reaction
prevention, blood type determination is cru-
cial. Research on the relationships between
blood types and different medical illnesses,
including coagulation disorders, cardiovas-
cular diseases, and infection susceptibility,
is also supported by blood group prediction.
IoT-based automated blood group detection
using image processing has the potential to
streamline blood group analysis by minimiz-
ing time and reducing the risk of manual er-
rors. Traditional blood group testing requires
manual intervention, which can lead to human
errors and inconsistencies, especially in high-
pressure settings, such as emergency rooms or
disaster relief areas. However, integrating [oT
with automated image processing can change
this by enabling remote, quick, and consistent
blood analysis. The proposed device identifies
the blood group using image processing tech-
niques along with IoT devices by providing a
very advanced and effective healthcare diag-
nostic system. Since it integrates the IoT, ma-
chine learning, and image processing to test
blood samples rapidly and accurately, this ap-
proach could be essential in environments in-
cluding homes, remote clinics, and hospitals.
In the future, automated disease prediction

could be incorporated for different diseases
using blood samples.
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