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ABSTRACT

Background: The assessment of treatment-induced changes in glioma and the
evaluation of glioma prognosis are crucial components of effective treatment manage-
ment. Radiomics models based on Positron Emission Tomography (PET) imaging can
provide critical insights into therapeutic response monitoring.

Objective: This systematic review aimed to evaluate the performance of PET-
based radiomics models in distinguishing treatment-related changes and predicting the
prognosis of glioma.

Material and Methods: In this systematic review, the articles were searched
from the Web of Science databases, MEDLINE, PubMed, and EMBASE. The search

terms were “amino acid PET”, “PET”, “glioblastoma”, “glioma”, “positron emission
tomography”, “machine learning”, “deep learning”, “radiomics”, “artificial intelli-
gence”, “Al”, “prognosis”, “outcome”, “post treatment changes”, “treatment-related
changes”, “progression”, “true progression” “pseudo-progression”, and “necrosis”.

The titles, abstracts, and full text of the recognized citations were reviewed by two
independent reviewers and then the selected articles were abstracted by two indepen-
dent reviewers based on a standard grid. PRISMA checklist was applied to assess the
overall quality of evidence for each outcome.

Results: The PET-based radiomics models outperform conventional PET param-
eter models, such as maximum tumor-to-brain ratios and mean tumor-to-brain ratios
in distinguishing post-treatment changes and predicting glioma prognosis. The model
integrating radiomics features and the conventional PET parameters achieved superior
diagnostic performance compared to radiomics and conventional parameter models
solely in differentiation treatment related changes.

Conclusion: PET based radiomics models demonstrate enhanced capability in
differentiating tumor recurrence from treatment-related changes. The implementation
of these models can facilitate personalized treatment plans and increase the patient’s
overall survival or quality of life.
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Introduction
lioma is a heterogeneous group of primary brain tumors, with
considerable chemical and histological heterogeneity, pos-
ing significant challenges to their treatment and management.
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Gliomas accounted for 26.3%, of all primary
Central Nervous System (CNS) tumors and
approximately 80% of malignant brain tumors
[1,2].

Glioma treatment typically employs a multi-
modal approach, aiming to remove or reduce
tumor size while effectively managing asso-
ciated symptoms [3-6]. Tumor surgery is of-
ten the first step to preserving brain function
while removing the tumor completely. Due to
the aggressive behavior, postoperative exter-
nal beam radiation, concurrent Temozolomide
(TMZ) chemotherapy, and additional adju-
vant temozolomide were administered after
surgery to target remaining tumor cells and
lower the chance of recurrence [7, 8]. The use
of these combination therapies has been as-
sociated with improved median survival rates
for glioma patients [9]. Despite the postopera-
tive care, the median Overall Survival (OS)
for these patients is just fifteen months [10].
Gliomas present notable challenges in clinical
management due to their diverse histological
and molecular characteristics. One of the criti-
cal issues in glioma treatment is the accurate
differentiation between post treatment or treat-
ment-related changes, including Pseudopro-
gression (PSP), Radio-necrosis (RN), and true
glioma progression, including progression/re-
currence because each requires distinct thera-
peutic interventions with a significant effect
on patient prognosis and outcomes. Moreover,
monitoring tumor progression is essential in
these patients after treatment, as it helps deter-
mine the next steps in their care. Confirming
whether a tumor is recurring or progressing
informs surgeons and patients about the best
treatment strategy [11, 12].

Previous studies have indicated the im-
portance of imaging modalities including
Positron Emission Tomography (PET) and
Magnetic Resonance Imaging (MRI) in ac-
curately characterizing glioma progression,
pre and post treatment management [13-18].
Advanced imaging techniques, such as amino
acid PET including O-(2-[18F] fluoroethyl)-L-

tyrosine (18F-FET), 18F-fluorodeoxyglucose
(18F-FDG), 11C-methionine (11C-MET),
3,4-dihydroxy-6-[ 1 8F]-fluoro-l-phenylalanine
(18F-DOPA), and 11C-choline (11C-CHO)
[10, 19-21] and cerebral blood volume (CBV)
evaluation with perfusion-weighted MRI, and
Magnetic Resonance Spectroscopy (MRS),
suggest deeper analysis of tumor characteris-
tics and microenvironment than conventional
MRI. Several studies represented superior per-
formance for amino acid PET, such as MET
PET (accuracy of 89.6%) [19], DOPA (accu-
racy of 82%) [22], and FET (accuracy rang-
ing between 81% and 99%) [23, 24] for dis-
tinguishing glioma post treatment recurrence/
progression and provide complementary and
comparable information to the MRI as a gold
standard. They represented that amino acid
PET can be an essential tool for distinguishing
tumor progression/recurrence from PSP, and
radiation necrosis [10].

In recent years, radiomics, Artificial Intel-
ligence (AI), Deep Learning (DL), and Ma-
chine Learning (ML) have enhanced research
on glioma patients [12, 13, 15, 17, 25-29].
Accordingly, PET imaging and advancements
in radiomics analysis hold promise in provid-
ing quantitative and qualitative insights into
glioma behavior and helping in distinct diag-
nosis, distinguishing recurrence from treat-
ment-associated modifications, and treatment
strategizing [15].

Regardless of growing interest in the use of
radiomics and PET imaging for glioma char-
acterization, a need for a systematic review to
explore the application of PET-based radiomic
models has remained for prognosis and post-
treatment assessment in glioma. This study
aimed to systematically investigate the capa-
bilities of PET-based radiomics and Al models
for the investigation of prognosis and differen-
tiation post-treatment changes, including pro-
gression, recurrence, PSP, and radio-necrosis
in glioma patients. The present study aimed to
clarify the diagnostic and prognostic utility of
these models and identify areas that need fur-
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ther research and clinical application.
Material and Methods

Eligibility Criteria

The present study included cross-sectional,
case-control, cohort, and studies assessing the
relevance of PET-based Al models (radiomics,
ML, and DL models) in assessing prognosis
and differentiating glioma progression or re-
currence from treatment-related changes. Case
reports, case series, review articles, editorials,
and commentary and abstracts of articles were
excluded from the study. The study also ex-
cluded papers evaluating MRI-based Al mod-
els, studies assessing glioma segmentation and
Isocitrate Dehydrogenase (IDH)-mutant with
Al

Search Strategy

In June 2024, the following databases were
electronically searched from January 1%, 2005,
to June 31%, 2024 including Web of Science
databases, MEDLINE, PubMed, and EM-
BASE using a detailed search strategy with
no language restriction. The search terms used
were “amino acid PET”, “PET”, “glioblas-

2 (13 2 (13

toma”, “glioma”, “positron emission tomog-
raphy”, “machine learning”, “deep learning”,
“radiomics”, “artificial intelligence”, “Al”,
“prognosis”, ‘“‘outcome”, “post treatment
changes”, “treatment-related changes”, “pro-
gression”, “true progression” “pseudo-pro-
gression”, and “necrosis”. The study’s meth-
odology was derived from an initial review
of related literature and a comprehensive in-
ternet search approach of systematic reviews
of radiation therapy outcomes and PET based
radiomics, ML, and DL models. The search
strategy was reviewed and commented on by
two independent medical librarians. In addi-
tion, the reference list of related papers includ-
ed in the study was examined. Afterward, the
results were hand-searched based on the titles
and abstracts to exclude studies according to

exclusion criteria.

Selection process

The titles and abstracts of the recognized ci-
tations were reviewed by two independent re-
viewers using a standardized screening guide.
We retrieved the full text of all citations rec-
ognized as qualified by at least one reviewer.
A standardized, pilot-tested format was then
used by two reviewers to independently screen
the full text for eligibility. Third reviewers
were contacted to resolve disagreements.

Data abstraction

The selected articles were abstracted by two
independent reviewers based on a standard
grid comprising the following items: purpose
of the study, comparison method, training,
dataset, models, validation, test, Areca Under
Curve (AUC), sensitivity and specificity, accu-
racy, and conclusion. In addition, to assess the
methodological quality of the involved stud-
ies, two reviewers used the Radiomic Qual-
ity Score (RQS) [30], a tool based on sixteen
items that indicates the quality of radiomics
study. Results of analyses restricted to PET
based Al models were recorded for prognosis,
post treatment changes, and radiotherapy out-
comes in glioma patients. PRISMA checklist
was used to evaluate the overall quality of evi-
dence for each outcome.

Results

Study selection

A total of 1056 articles were found in the
initial literature review. Title and abstract
screening were done, and after that 112 stud-
ies were selected for full-text screening, of
which 101 studies were excluded. Finally, 11
articles were included in the systematic review
(Figure 1). Duplicate and conference data
were the most common exclusions.

PET radiotracer

The majority of included studies (10 stud-
ies) (Table 1) focused on radiolabeled amino
acid PET. Amino acid radiotracers, including
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—

Records identified through:

Records removed before screening:

> e Duplicates (n=23)

e database searching (n = 1056)
e Registers (n=0)

Identification

(

)

Abstract screening: (n = 112)

e Studies marked as unqualified by
automation tools (n = 4)
e Other reasons (n=917)

v

Screening

Full text records assessed for eligibility:
(n=45)

> Records excluded: (n=67)

Full text excluded:

e review, case report, editorial and
> y: (n=24)

A 4

Comprised studies in review (n = 11)

[ Included ] [

e Irreverent outcome or topic (n = 10)

Figure 1: Database and register flow diagram for identifying studies

6 studies used O-(2-[18F] fluoroethyl)-L-tyro-
sine (FET) [31-37], 2 studies utilized L-3,4-di-
hydroxy-6-[ 18F]-fluoro-phenylalanine (18F-
DOPA), and 2 studies used 11C-methionine
(MET). In addition, one study used a nucleo-
side analog probe: 3’-deoxy-3’-18F-fluoro-
thymidine (FLT) (Table 1).

PET Radiomics for differentiation
post treatment changes from glioma
progression

The results revealed that radiomics, ML,
and DL models based on PET imaging dem-
onstrate superior performance in differentiat-
ing post treatment changes in comparison to
conventional PET parameters, such as maxi-
mum Tumor-to-Brain ratios (TBRmax), mean
Tumor-to-Brain ratios (TBRmean), and Time
to Peak (TTP) models in glioma patients [13,
32, 33, 37]. In addition, the model integrating
radiomics features and the conventional PET
parameters achieved superior diagnostic per-
formance compared to radiomics and conven-
tional parameter models solely (AUC of 0.85,
0.85, 0.78, sensitivity of 0.81, 0.73, 0.66, and
specificity of 0.70, 0.80, 0.80, respectively) in
distinguishing treatment-related changes from

glioma progression [33]. The dynamic PET
imaging dataset outperformed static imaging-
based models, with the combined dynamic
and static feature models. The AUC values for
dynamic, combined static/dynamic, and static
models were 0.805, 0.79, and 0.715, respec-
tively, in a cohort of 85 patients [13]. The ran-
dom forest model utilizing MET PET achieved
highest performance in distinguishing recur-
rent brain tumor from radiation necrosis, with
an AUC of 0.98 in 41 patients [38]. The FET
PET radiomics models achieved an AUC of
0.93 for Linear Discriminant Analysis (LDA)-
model [31], 0.85 for Logistic regression mod-
el [33], 0.74 [37], and 0.85 [35] for random
forest in post treatment differentiation. The
findings from the 18F-DOPA PET radiomics
models demonstrated AUC values of 0.715 for
static features and 0.805 for dynamic features
when using the ElasticNet logistic regression
model [13], For the XGBoost (XGB) model,
the AUC values were 0.715 and 0.755 for stat-
ic and dynamic datasets, respectively, while
the random forest model achieved AUC val-
ues of 0.832 and 0.749 for static and dynamic
datasets, respectively [13]. Table 2 showed the
results of PET based radiomics models for dif-
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ferentiation treatment related changes in glio-
ma patients.

PET Radiomics for glioma survival

stratification and prognosis
Generally, PET based DL and radiomics

models represented higher performance than

conventional models for predicting tumor pro-
liferation, recurrence and survival of glioma
patients (Table 2).

As compared to conventional clinical pa-
rameters alone, the combination of clinical pa-
rameters and radiomics using pretreatment dy-
namic FET PET data improved the prognostic

Table 1: Tumor and image characteristics of included studies

Number of
Author Patients (Mean e Post or Pretreatment PET  Fallow Imaging
Tumor Characteristics i i i
(year) age and range imaging up modality
(year))
IDH-mutant anaplastic astrocytoma (8),
Ahrari et al IDH-wildtype anaplastic astrocytoma (12),
(13] (2021)' 85, 57 (21,80) IDH-mutant and 1p/19q anaplastic oligoden- Post treatment PET imaging 6 months  18F-DOPA PET
drogliomas (10), IDH-mutant glioblastomas (6),
IDH-wildtype glioblastomas (49)
Lohmann IDH-wildtype glioblastoma (32), IDH-mutant >
etal. [32] 34 5712 glioblastoma (1), IDH-wildtype anaplastic Post treatment PET imaging months 18F-FET PET
(2020) astrocytoma (1)
Kebir et al. ) ) ) o 91.3
44,51 (34-79) Primary IDH-wildtype glioblastoma Post treatment PET imaging 18F-FET PET
[31] (2020) days
Oligodendroglioma (17), IDH-mutant Astro-
Muller et al. 151,52.3 cytoma (34), IDH-wildtype Astrocytoma (17), >6 18F-FET PET
[33] (2022) (20.4-78.0) IDH-wildtype Glioblastoma (71), IDH-mutant months
Glioblastoma (11), Gliosarcoma (1)
Hotta et al _ . o >6
41,55.5+13.2 Metastatic brain tumor (21), Glioma (20) Post treatment PET imaging 11C-MET PET
[38] (2019) months
Paprottka . ) 18F-FET PET +
66, 55 Glioblastoma (51), Astrocytoma (9), Oligoden- o >12 )
etal. [35] ) ) Post treatment PET imaging DSC perfusion +
(54.91£12.2) droglioma (13), Polycystic Astrocytoma (1) months
(2021) APTw
Lietal. [36] 141,59.3 ) ) N <12
IDH-wildtype glioblastoma Pretreatment PET imaging 18F-FET PET
(2023) (19.0-77.2) months
Carles et al. IDH-wildtype glioblastoma (14), IDH-mutant o L >3
32, 52 (30-77) i : Pre-rirradiation PET imaging 18F-FET PET
[34] (2021) glioblastoma (10), Unknown glioblastoma (8) months
Mitamura Diffuse astrocytoma (4), Anaplastic astrocytoma 12
etal. [39] 37,55.8 (8-84) (9), Anaplastic oligodendrogliomas (2) Anaplas- Pretreatment PET imaging months 18F-FLT PET
(2017) tic ependymoma (1), Glioblastomas (21)
Shahzadi ) ) ) 11C-MET PET
IDH-wildtype glioblastoma (119), IDH-mutant Post operative and pre Chemora- 58 .
et al. [40] 132, 61 (24-77) ) ) } o + gadolinium-
glioblastoma (8), Unknown glioblastoma (5) diotherapy PET imaging months
(2024) enhanced T1-w
First PET imaging during treatment
Ahrari et al. ) . and the second PET imaging at
18, 62 (45-69 High-grade glioma . ) ) >1year 18F-DOPAPET
[25] (2024) ( ) ors 9 the time of adjuvant temozolomide 4

(TMZ) chemotherapy

DSC: Dynamic Susceptibility Contrast Imaging, APTw: Amide Proton Transfer-Weighted MRI Imaging, IDH-mutant: Isocitrate
dehydrogenase, (18F-DOPA) PET: 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine Positron Emission Tomography, (18F-FET)
PET: O-(2-[18F] fluoroethyl)-L-tyrosine Positron Emission Tomography, (11C-MET) PET: 11C-methionine Positron Emission
Tomography, (18F-FLT) PET: nucleoside analog 3-deoxy-3'-18F-fluorothymidine Positron Emission Tomography
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Table 2: The radiomics, machine learning, and deep learning models’ characteristics and their performance of the including studies

Feature
Models [Methods Param- Extraction
Author Aim of study for model evalu- eters and Model Type of Extracted _Bmmw Outcome
(year) : . . features modality
ation] Metrics implementa-
tion Software
The AUC values of LR model for dynamic, static, and combining of static/
_— dynamic features were 0.805, 0.715 and 0.79, respectively. The dynamic da-
) . Pyradiomics (Nov . )
Diagnosing treatment- Accurac 2021), scikit-learn 18F- taset led to better findings than the static model (P<0.001). RF AUC value
related changes from  XGBoost (XGB), Ran- AUC Ix p :_m: ackage 94 radiomic features DOPA PET was 0.749 and XGB AUC was 0.715 for static datasets, and dynamic features
Ahrarietal.  high-grade glioma pro- ~ dom Forest, Elastic- s y packag including statistical, . had AUC of 0.832 and 0.755 (P<0.001 for the dynamic and static models’
: : . : Precision, (Nov 2021), ) (static and . L ) .
[13](2021)  gression using DOPA  Net logistic regression histogram-based, texture ) comparisons). RF and XGB models combining static and dynamic datasets
) ) Balanced XGBoost Python . ) dynamic )
PET static and dynamic [5-folds CV] and intensity features and represented respective AUC of 0.834 and 0.804 for each model (both su-
- Accuracy package (Nov DOPAPET) ) . - .
radiomics 2021) perior to static models, P<0.001). Best radiomics models represented a little
better performance than the reference tumor-to-background (TBR) model
(AUCs of 0.834 and 0.792, respectively, P< 0.001).
Sensitivity,
Lohmann Differentiating PSP from Random Forest Specificity, Pyradiomics (ver- .SN features including 18F-FET The FET mm._. radiomics model properly _Qma_*_m.a m.__ PSP patients s\.;:.ﬂo&
etal. 32 early tumor progres- [7-folds CV, adjusted PPV, NPV, sion 3.0), Python first order, shape, texture PET (static accuracy in the test dataset (AUC, 0.74; specificity of 40%; sensitivity of
Amo.wov sion using FET PET and __am,x ohx_v_ FNR, FPR, m.n_mm w features GLCM, GLRLM, FET PET) 100%; P=0.017). TBRmax was the best parameter for FET PET and showed
radiomics Accuracy, F1, package. GLSZM, NGLDM, GLDM sensitivity of 81%; and negative predictive value of 80%.
MCC, AUC
In the TP group in comparison to the PSP group TBRmax and TBRmean were
Analysis of dynamic 18F-FET higher significantly (P=0.033 and P=0.014, respectively). TTP's classification
Kebir et al and static FET-PET Analysis (LDA)- clas- AUC, Python (version PET (dy- performance was the poorest, with an AUC of 55%. For the accurate detec-
3] ﬁomow models for detecting m:_mnmw folds stratified Sensitivity, 3.7.1), R (version ~ TBRmax, TBRmean,TTP namic _uv_\m._. tion of PSP, the AUC values for TBRmax and TBRmean were 0.68 and 0.74,
PSP of TP in IDH- o Specificity 35.3) PET) respectively. The AUC (0.93) for the LDA-based approach was significantly
wildtype GBM greater than the TBRmax AUC. The AUC of classification increased to 93%
(95% ClI, 78-100%; sensitivity) by applying LDA model.
I In the test dataset, the logistic regression model based on the TBRmean and
S RadiomiX toolbox e .
Static clinical FET PET oo TBRmax produced an AUC value of 0.78, sensitivity of 0.66, and specificity of
) - (Oncoradiomics, ~ TBRmax, TBRmean, 221 . o
using radioomics can - L . A 18F-FET  0.80. In the test dataset, the model that was exclusively based on radiomics
o - ) AUC, Liége, Belgium) in features including first e .
Mulleratal.  distinguish treatment- Logistic regression o : - PET features produced an AUC value of 0.85, sensitivity 0.73, and specificity of
Sensitivity, ~ Matlab, R (version order statistics, shape, ) ) ) .
[33](2022)  related changes from models [NA] o ) (dynamic  0.80. The greatest diagnostic performance was achieved by the model that
o Specificity 4.0.5, R Studio, GLCM, GLRLM, GLSZM, ) . -
tumor progression in PET) combined the parameters of standard FET PET with two radiomics character-
: Inc., Boston, MA, and features e e o
gliomas USA) istics, yielding an AUC value of 0.85, sensitivity value of 0.81, and specificity

value of 0.70.
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lIoma

for Gl

iomics

PET Rad

Author
(year)

Aim of study

Models [Meth-
ods for model
evaluation]

Param-
eters
Metrics

Feature
Extraction and
Model implemen-
tation Software

Type of Extracted
features

Image
modality

Outcome

Hotta et al.
[38] (2019)

Paprottka
etal. [35]
(2021

Li et al [36]
(2023)

Carles et al
[34] (2021)

Distinguishing a recur-
rent brain tumor from
radiation necrosis by us-
ing 11C-MET radiomics
models

FET-PET, MRI, APTw,
and DSC perfusion
data used to distin-
guish tumor progression
from treatment-related
changes in gliomas

Analysis of static and
dynamic FET PET
features in newly di-
agnosed  IDH-wildtype
GBM in order to stratify
survival

Identifying  recurrence

GBM (rGBM) patients

after re-irradiation using

prognostic model based

FET PET radiomics fea-
tures (RF)

Random forest
[10-folds CV]

Random Forest clas-
sifier [3-folds CV]

Linear Regression
[5-folds CV]

Binary logistic re-
gression [imbalance-
adjusted bootstrap
resampling]

AUC, Gini
Index

AUC, accura-
cy, sensitivity,
iy

AUC, accu-
racy, sensitiv-
ity, specificity,
positive pre-
dictive values
(PPV), nega-
tive predictive
values (NPV)

AUC, Correla-
tion, Kaplan-
Meier curve

performance

R package

MATLAB (MathWorks,
Natick, MA, USA), scikit-
learn implementation

Pyradiomics (version
3.0.1), Python (version
3.8.5) using scikitiearn

package (version 0.24.1)

In-house software based
on MATLAB® (The
MathWorks Inc., Natick,
MA).

42 PET features including metabolic
tumor volume, conventional SUVmax,
texture features

5t 25 50th, 75, and 95" percentile
intensity, Shannon Entropy, interquar-
e Range, Volumes of hot-spot areas

First-order, shape, and texture
features, which were extracted from
TBR (79 features) and TTP images (94
features)

135 features included SUV-Histogram
group, Geometry, texture features:
GLCM, GLRLM, GLSZM, NGTDM

11C-MET PET

18F-FET PET +
DSC perfusion
+APTwW

18F-FET PET
(static and
dynamic PET)

18F-FET PET

MET PET radiomics model and tumor-to-normal cortex
(T/N) ratio investigation showed AUC values of 0.98
and 0.73, sensitivity values of 90.1% and 60.6%, and
specificity values of 93.9% and 72.7%, respectively.
The most relevant feature for distinguishing recurrence
from radiation necrosis was gray level co-occurrence
matrix (GLCM) dissimilarity.
The Random Forest classifier trained with FET-PET,
DSC-derived cerebral-blood-volume (CBV) intensity
maps and APTw, resulted AUC value of 0.85, accuracy
value of 0.86, sensitivity value of 0.91, and specificity
value of 0.71 for the recognition progressive disease
(PD) from treatment-related changes. Random Forest
represented significantly higher performance (P=0.03)
compared to MRI with an accuracy value of 0.82 sen-
sitivity value of 0.95, specificity value of 0.41, and FET-
PET with accuracy value of 0.81, sensitivity value of
0.81, specificity value of 0.82.

A clinical-radiomic model in comparison to clinical pa-
rameters and dynamic radiomic features resulted in
the highest level of predictability of short-term survival
with an AUC value of 0.74, sensitivity value 0.667 and
specificity value 0.70 in the independent testing cohort.

In terms of time-to-progression prediction, Small-
Zone-Low-Gray-Level-Emphasis (SZLGE) showed the
best results (P=0.001). Results represented moderate
recurrence location (RL) predictions with an AUC: 0.66
and sensitivity: 0.78 for the TTP-radiomics-signature
and 0.63 and 0.79 for SZLGE, respectively. The results
demonstrated the effectiveness of FET-PET radiomics
for prognostic assessment and selecting rGBM-pa-
tients benefiting from re-irradiation.
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Feature
Models [Meth P -
Author . odels [Methods aram Extraction and Type of Extracted Image
Aim of study for model evalu- eters . X Outcome
(year) R i Model implemen- features modality
ation] Metrics |
tation Software
Comparing FLT uptake The significant correlations between tumor-to-contralateral nor-
Ema m@a_ " cws mal brain tissue T/N ratio and Ki-67 index (P=0.02) and metabolic
9 .@ AUC, Cor- First-order features: the standard tumor volume with Ki-67 index (P=0.02) were obtained. The re-
textural features with ) , L ) o . . .
Mitamura conventional PET relation, In-house software in  deviation of the gray-level histogram sults indicated skewness and kurtosis were associated with OS
etal [39] arameters in newl Linear regression, Cox  Kaplan— C environment (gcc  distribution, skewness, kurtosis, en-  18F-FLT ~ (P=0.03 and 0.02, respectively). Patients with skewness values
(2017) Q_M nosed dliomas mw g regression [NA] Meier 4.9.3). SPSS (version  tropy, uniformity, tumor-to-contralat- PET less than 0.65 survived 1462 days on average, compared to 917
9 - g . curve per- 22) eral normal brain tissue (T/N) ratio, days for those with values greater than 0.65 (P=0.02). Mean sur-
examining correlations ) ) . .
formance MTV vival was 1616 days for patients with kurtosis values less than
between the results and . . .
roliferative activit 6.16, in comparison to 882 days for those with values greater than
P y 6.16 (P=0.006).
T Cox regression, 327 features from PET 209 features In the test group the MET _u_.m._. 3D-DenseNet :.._oam_ indicated
Predicting time-to- ) ) ) ) the best performance for residual tumor detection. For T1c-w
random survival MIRP Python toolkit ~ from T1cw-MRI, Local intensity fea- . ) . ) Lo
recurrence and overall ) ) - 1C-MET  MRI, the logistic regression model with conventional radiomics
. - : forest, and XGBoost_ (version 1.1.3), R tures, Intensity-based statistical fea-
Shahzadi  survival in GBM using . ) ) ) PET+ features had the best performance (AUC: MET-PET 0.95, T1c-w
) linear model 3D-CNN AUC, C-  (version 4.0.3), Python tures, Intensity-volume, histogram, L )
etal [40] 3D convolutional neural ) : ) . gadolinium-  MRI 0.78). For the prognosis of TTR and OS, the MET-PET 3D-
. models: 3D-VGGNet, index (version 3.7.0), Keras  Intensity histogram, GLCM, GL- . .
(2024) networks with MET enhanced  DenseNet model combined with age and MGMT status performed
- 3D-ResNet, and (v2.3.1), TensorFlow ~ RLM, GLSZM, NGTDM, Grey level )
PET and gadolinium- ) . T1-w best (Concordance-Index: TTR 0.68, OS 0.65). Conventional and
3D-DenseNet [5-folds (v2.1.0) distance zone, Neighborhood grey . - .
enhanced T1w stratified CV] level Log transformed features deep learning-based radiomics can detect residual tumors on
-9 MET PET more accurately than on T1c-w MRI.
Random forest, 9 conventional features such as The highest prediction performance of progression-free survival
Evaluating a model Logistic regres- TBRmax, TBRmean, and tumor- was obtained with the SVM model in combination with recursive
g sion, Xgboost linear to-striatum, MTV, region-based dy- feature elimination (RFE) for delta-absolute radiomics (AAR: C-
based on DOPA PET ) ) ) 18F- ) A ) )
radiomics variation model, Cox regression, In-house software for ~ namic TTP, and the slope of the lin- DOPAPET index = 0.783) and with C-index feature selection for delta-relative
Ahrari et al over fime in hiah arade 3D-CNN models AUC, C- fractures extraction,  ear regression for the data obtained (static and radiomics (ARR: C-index = 0.740). This performance was consis-
[25] (2024) lioma for awmow.ﬂ including 3D-ResNet, index Python (version 3.8)  between the 10th and 30th min, 199 dvnamic tent when informative features were transferred from a 35-patient
_w roaression-free and 3D-DenseNet, using the scikit-survival  radiomics features (static TBR ra- v_\um._.v group, resulting in a C-index of 0.751 (0.716-0.784, P=0.06).
9p M_E_é_ 3D-VGGNet [4-folds diomics (94features), dynamic TTP GLCM Information Correlation 2 feature from dynamic TTP para-
CV with 25 repetitions, (94 radiomics features) and 11 mor- metric images appeared as the most important radiomics feature
7-folds CV] phological features) in both models.

PSP: Pseudoprogression, TP: True Progression, TTP: Time To Peak, TBR: Tumor To Brain Ratios, TBRmean: mean Tumor-To-Brain Ratios, TBRmax: maximum Tumor-To-Brain Ratios, TTP: Time-To-Peak,
TTR: Time To Recurrence, MTV: Metabolic Tumor Volume, SUV: Standard Uptake Value, 18F-DOPA PET: 3,4-dihydroxy-6-[ 18F]-fluoro-L-phenylalanine Positron Emission Tomography, (11C-MET) PET:
11C-methionine Positron Emission Tomography, (18F-FLT) PET: nucleoside analog 3'-deoxy-3'-18F-fluorothymidine Positron Emission Tomography, MRI: Magnetic Resonance Imaging, ATPw: Amide Proton
Transfer-Weighted, DSC: Dynamic Susceptibility Contrast MRI, CV: Cross Validation, AUC: Area Under The ROC Curve, PPV: Positive Predictive Values, NPV: Negative Predictive Value, FNR: False Nega-
tive Rate, FPR: False Positive Rate, MCC: Matthews Correlation Coefficient, GLCM: Gray Level Co-Occurrence Matrix, GLRLM: Gray Level Run Length Matrix, GLDM: Gray Level Dependence Matrix,
GLSZM: Gray-Level Size Zone Matrix, NGTDM: Neighboring Gray Tone Difference Matrix, OS: Overall Survival, RF: Random Forest, LR: Logistic Regression, LDA: Linear Discriminant Analysis, 3D-CNN:
3-Dimensional Convolutional Neural Network, 3D-VGGNet: 3-Dimensional Vision Geometrical Group Network, SVM: Support Vector Machine, LDA: Linear Discriminant Analysis, MIRP: Medical Image

Radiomics Processor
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accuracy for short-term survival assessment of
patients with newly diagnosed IDH-wildtype
glioblastoma [36]. The FET-PET demonstrated
potential in predicting recurrence in glioblas-
toma (GBM) patients undergoing re-irradia-
tion, with an AUC and sensitivity of 0.66 and
0.78, respectively [34]. In addition, the 3D-
DenseNet model based on postoperative 11C-
MET PET demonstrated strong performance
in identifying residual tumors, achieving an
AUC of 0.95. In terms of time to recurrence
(TTR) and OS prognosis, the 3D-DenseNet
model based on MET PET, which incorpo-
rated age and O6-methylguanine-DNA meth-
yltransferase (MGMT) promoter methylation
status achieved the best performance, with
concordance indices of 0.68 for TTR and 0.65
for OS [40]. In addition, 18F-DOPA delta ra-
diomics, using Recursive Feature Elimination
(RFE) and Support Vector Machine (SVM)
represented high performance in predicting
progression-free survival in rare high-grade
glioma, with a concordance index of 0.751
(95% CI: 0.716-0.784, P-value=0.06) [25].

Discussion

The present study is a systematic review
on relevant clinical topics and challenges of
glioma prognosis and distinguish treatment
related changes, including progression, PSP,
and RN using PET based radiomics models.
This review summarizes the key findings and
discusses their implications for practice. Such
a review is essential for advancing personal-
ized medicine in the care of glioma patients
and ultimately improving patients’ treatment
outcomes and quality of life.

In the course of glioma treatment, progres-
sion or recurrence, PSP, and RN are all po-
tential outcomes [41]. Approximately 60%
of patients with low-grade gliomas expe-
rience tumor recurrence within five years
[42, 43], while around 40% of grade III glio-
mas and 90% of grade IV gliomas progress
within two years [42, 44]. Recurrence in gli-
oma, particularly in high-grade forms, such as

glioblastoma, remains a significant challenge
in neuro-oncology. Gliomas, characterized
by diffuse infiltration of adjacent brain tissue,
frequently recur despite aggressive treatment
approaches, including surgery, radiation, and
chemotherapy. Recurrence is typically local-
ized to the primary tumor site, few centimeters
around the tumor bed and the resection site,
although multifocal or distant recurrences can
also occur [45, 46]. Even with the addition of
temozolomide to GBM radiation therapy, the
most common site of initial recurrence re-
mains local failure [4, 45, 47-49]. The mecha-
nisms driving glioma recurrence are complex
and multifactorial, involving intrinsic and
adaptive tumor cell resistance, tumor hetero-
geneity, and immune evasion [50, 51].

Abbasi et al. represented that PSP happened
in 36% of (95% confidence range, 33—40%)
high-grade glioma patients and can occur in up
to 20% of individuals following routine temo-
zolomide chemoradiotherapy [52]. Through
PSP, inflammation, edema, endothelial dam-
age, abnormal capillary permeability, Blood
Brain Barrier (BBB) disruption and oligoden-
droglia injury can cause a new or increased
contrast enhanced lesion after chemoradiation
(mostly during six months after treatment)
[2, 18, 41]. The chance of developing diseases
is raised within three months to years after the
therapy and occurs mostly in MGMT-methyl-
ated tumors treated with TMZ [2, 41, 53].

Furthermore, among patients with malignant
gliomas, RN is a severe radiotherapy-induced
local tissue response. In most cases, it occurs
within three to twelve months of radiation
therapy, but it can occur years later as well
[53]. RN is characterized by endothelial dam-
age, severe neurotoxicity, the release of tumor
necrosis factor-alpha (TNF-), damage to the
BBB, glial damage, and deteriorating of ede-
ma that causes the emergence of new regions
displaying abnormal improvement simulating
true progression and recurrence [2, 53]. Sev-
eral pathological criteria classified RN from
other glioma-post treatment circumstances,
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including histological examination, gliosis,
edema, hyalinization, endothelial thickening,
thrombosis, vessel occlusion, and fibrinoid de-
position [2, 54]. The majority of radiation ne-
crosis occurs in regions that receive the high-
est radiation dose, typically near the tumor site
and within the resected tumor surgical cavity
[54]. On traditional MRI, it can be difficult to
distinguish RN from tumor progression, as
contrast-enhancing masses on T1-weighted
contrast-enhanced imaging are often similar
to those seen in tumor recurrence [2, 55].

Radiotracers play a crucial role in diagnos-
ing and treating gliomas. Traditional MRI is
extremely difficult to use in routine clinical
care or clinical trials to determine whether a
tumor has responded, especially in pre-con-
trast T1-weighted images [56]. In order to
manage brain tumors, Response Assessment
in Neuro-Oncology group (RANO) recom-
mended radiolabeled amino acid PET [57].
Among the various tracers in PET imaging for
glioma, 18F-FET, 11C-MET, 18F-DOPA, and
11C-CHO are particularly notable, due to their
ability to highlight various aspects of tumor
biology and metabolism [13, 17, 58, 59].

The results demonstrated the higher perfor-
mance (higher AUC, sensitivity and specific-
ity) of radiomics, ML, and DL models over
conventional PET parameters-based models
in distinguishing glioma treatment related
changes [13, 31, 33]. This enhanced perfor-
mance may be attributed to the ability of ra-
diomics analysis to extract a diverse set of
quantitative features from medical images,
including texture, shape, and intensity char-
acteristics. These comprehensive features can
capture subtle changes in tissue characteris-
tics that might not be apparent through tradi-
tional visual inspection or even conventional
PET metrics including Standard Uptake Value
(SUV) or TBR. These additional features can
provide a more precise understanding of the
tumor microenvironment and response to ther-
apy, leading to improved diagnostic accuracy
[13, 60].

In addition, radiomics models use advanced
mathematical algorithms to analyze the com-
plex relationships within the extracted fea-
tures. These algorithms can recognize patterns
and correlations that are difficult for human
observers to perceive [33, 60]. Furthermore,
advanced techniques, such as principal com-
ponent analysis, recursive feature elimina-
tion, and logistic regression are applied in ra-
diomics models to achieve higher predictive
values and better distinguish treatment-related
changes from tumor progression or recurrence
[60].

FET, as a tyrosine analog, which is absorbed
into the glioma cells via the L-type amino acid
transporter, is used to monitor the amino acid
transport capacity of brain tumors, related
to tumor proliferation. The high sensitivity
and specificity of FET PET in distinguishing
glioma recurrence have been confirmed by
several studies [61, 62]. Sensitivity typically
ranges from 70% to 90%, indicating the per-
centage of actual glioma recurrences correctly
identified by the test/model [62]. In evaluat-
ing model performance, sensitivity refers to
the True Positive Rate (TPR), which estimates
the proportion of real positive cases that the
model correctly identifies (i.e., accurate de-
tection of glioma recurrence). The specific-
ity of a model refers to its ability to correctly
identify actual negative cases (i.e., accurate
detection of non-recurrence). High values for
both sensitivity and specificity indicate that
FET PET performs exceptionally well in ac-
curately detecting recurrences and excluding
non-recurrences in patients with gliomas [62].
A high sensitivity is essential for minimizing
false negatives, which could lead to missed di-
agnoses of recurrences. Meanwhile, FET PET
has a specificity of 60% to 90%, indicating a
higher proportion of true negative results. This
is a measure of the percentage of glioma cases
that are correctly identified as negative by the
test or model. High specificity helps reduce
false positives and thus avoids unnecessary
invasive procedures or treatments [34-36].

J Biomed Phys Eng



PET Radiomics for Glioma Treatment Related Changes

Results showed high sensitivity and specific-
ity in detecting glioma recurrence and making
it a valuable tool for monitoring therapeutic
response and diagnosing disease progression
[21, 62-65]. FET is the most widely used clini-
cal and available tracer, and these results dem-
onstrate its usefulness in detecting glioma re-
currence accurately and precisely. This could
explain why most of the studies reviewed used
FET-PET models [23,31, 32, 34-36]. Paprottka
et al. concluded that the random forest model,
combining FET PET data with advanced MRI
imaging techniques, assesses disease progres-
sion with a sensitivity of 91% and a specific-
ity of 70% [35]. Kebir et al. also developed
a linear discriminant model by using FET
PET image radiomics information, achieving
excellent detection of pseudoprogrossion in
IDH-Wildtype glioblastoma with an AUC of
0.93 in comparison to conventional PET pa-
rameters model TBRmax and TBRmean with
AUC 0.68 and 0.74, respectively [31].
Another amino acid radiotracer is [11C]
MET, which is actively transported into glio-
ma cells. Tumor amino acid uptake by MET
reflects tumor cell proliferation and angio-
genesis. MET PET imaging has proven use-
ful in detecting glioma recurrence and guid-
ing treatment decisions, showing the highest
sensitivity (90%) and specificity (87%) among
the available radiopharmaceuticals, demon-
strated superior diagnostic power for recur-
rence detecting. As it displays an impressive
90% sensitivity, it can detect even the smallest
signs of recurrence, preventing missed diag-
noses and ensuring nearly all cases are iden-
tified. Furthermore, its exceptional specific-
ity of 87% allows for the confident exclusion
of non-recurrence cases, thereby enhancing
diagnostic reliability. These remarkable at-
tributes solidify MET’s position as a leading
radiopharmaceutical for the precise evaluation
of glioma recurrence [66, 67]. A group of re-
searchers demonstrated the high performance
of a radiomic approach using a random forest
classifier to distinguish recurrent tumors from

RN with MET. Their results showed an area
under the curve (AUC) of 0.98, along with a
sensitivity of 0.90 and a specificity of 0.939
[38]. Random forest is an ensemble learning
algorithm that generates multiple decision
trees during the training phase and determines
the final classification based on the majority
vote derived from the predictions of individual
trees [68]. L. Breiman developed the random
forest model in 2001, and it has since become
highly successful in both classification and re-
gression tasks due to its robustness and ability
to handle complex datasets [69]. Multiple de-
cision trees are combined to make predictions
by averaging in settings where the number of
variables exceeds the number of observations
[69, 70]. It can also be adapted to a variety
of ad hoc learning tasks and returns variable
importance measures, which help identify the
most influential features in the model’s predic-
tions [70]. Its advantage over other models lies
in its capability to effectively handle complex
datasets, deliver high predictive accuracy, and
incorporate an inherent mechanism for evalu-
ating feature importance. stems from its abil-
ity to handle complex datasets, provide high
accuracy, and provide built-in feature impor-
tance evaluation [69, 71].

DOPA serves as a precursor to dopamine
and norepinephrine, neurotransmitters impli-
cated in pain modulation and stress response.
Its accumulation in glioma cells, indicates the
presence of functional dopamine transporters,
which are often overexpressed in high grade
glioma including glioblastoma. Studies have
indicated that DOPA PET can effectively dif-
ferentiates glioma recurrence from treatment-
related changes, and providing valuable infor-
mation for patient management [10]. Recent
studies reported that DOPA PET exhibits
higher sensitivity and comparable specificity
to FET PET in detecting glioma recurrence
[10, 61, 72]. Notably, only two studies report-
ed higher sensitivity with FET PET compared
to DOPA PET. It is important to mention that
the current evidence supporting comparative
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evaluation of these two imaging methods for
assessing glioma recurrence is of very low
quality. Therefore, further research is neces-
sary to obtain more definitive and clinically
meaningful results [10, 61, 72]. The selection
of a specific radiotracer for PET imaging in
glioma is determined by the particular tumor
biological characteristics to be evaluated, in-
cluding functional aspects of proliferation
such as amino acid transport and glucose me-
tabolism to neurotransmitter synthesis. Each
radiotracer provides distinct insights into the
pathophysiology of glioma, thereby assisting
in diagnosis, staging, and monitoring of tumor
progression and treatment response [73, 74].
Ahrari et al. employed dynamic radiomics
models and static DOPA PET including ran-
dom forest, ElasticNet logistic regression
(LR), and XGBoost to differentiate high-grade
glioma progression from treatment-related
changes. Their results represented AUCs of
0.834 for the best radiomics model (i.e., ran-
dom forest) which slightly outperformed the
reference tumor-to-background (TBR) with an
AUC of 0.792 (P<0.001). Additionally, their
findings revealed a lower AUC of 0.79 for the
LR model compared to the other models [13].
Interpreting these findings within the con-
text of specific studies and clinical scenarios
is essential, considering several factors includ-
ing the imaging protocols, treatment effects,
and patient population characteristics. It is
important to recognize that imaging protocols
can influence the reproducibility, robustness,
and generalizability of radiomics features and
models. When most data are derived from one
or a few centers with specific protocols, the
model may not generalize effectively to data
acquired using different protocols. Therefore,
standardization or harmonization of imaging
protocols is essential to minimize these ef-
fects and improve the clinical utility of PET
based radiomics [75]. In addition, glioma
characteristics vary with age, as older patients
often have more aggressive tumors and dis-
tinct genetic mutations (e.g., IDH mutations)

[6]. Consequently, radiomics features derived
from PET images may reflect these biologi-
cal differences, affecting model performance
across different age groups. Moreover, varia-
tions in follow-up duration and the timing of
early or late changes in imaging biomarkers
may lead to misinterpreted if follow-up tim-
ing is not standardized, resulting in biased or
incomplete training data for the models.

Another key application of radiomics mod-
els is in predicting tumor prognosis and pa-
tient survival. By analyzing radiomic features
extracted from PET scans, researchers may
be able to predict tumor prognosis and patient
survival rates [36]. For instance, specific tex-
ture patterns or intensity distributions may be
associated with tumor aggressiveness, thereby
influencing survival time. Carles et al. demon-
strated that radiomics texture features derived
from FET PET images were most effective in
predicting time-to-progression (P=0.001) in
glioblastoma. They suggested that FET-PET
radiomics could play a valuable role in prog-
nostic evaluation and in identifying glioblas-
toma patients who may benefit from re-irradi-
ation [34].

Radiomic models can also support risk clas-
sification, helping recognize glioma patients
at high risk of recurrence or poor response to
standard treatments thereby informing person-
alized treatment strategies [25]. Shahzadi et
al. demonstrated that a 3D-DenseNet model,
based on MET-PET integrated with age and
MGMT status, achieved the highest perfor-
mance in predicting overall survival and time
to recurrence in glioblastoma patients, with
Concordance Indices of 0.65 for overall sur-
vival and 0.68 for time to recurrence [40].

The present study has several limitations.
The small number of studies included and
their heterogeneity particularly in terms of
patient demographics, follow-up durations,
glioma subtypes, and imaging protocols, may
limit the generalizability of the findings. Con-
sequently, further investigations involving
additional models and PET radiotracers are
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necessary to validate these results with greater
accuracy. Moreover, selection bias may have
influenced the studies, as patients unable to
undergo surgery or chemoradiotherapy—of-
ten due to advanced-stage cancer or significant
comorbidities—are frequently excluded. Ad-
ditionally, confounding factors such as tumor
grade, gender, race, and other comorbid condi-
tions may affect treatment outcomes and ra-
diomics model performance. Therefore, these
variables should ideally be controlled in future
analyses to improve the reliability of the find-
ings.

Challenges and Future Directions

Although the potential benefits of PET based
radiomic models in glioma management are
significant, several challenges need to be ad-
dressed. The most important issue is the need
for standardized protocols for image acquisi-
tion, feature extraction, and model develop-
ment to ensure reproducibility in studies. Ad-
ditionally, precise validation against clinical
and pathological criteria for establishing the
reliability and accuracy of these models, and
integrating radiomic features with genomic,
proteomic, and other clinical data can increase
predictive power. Furthermore, overcoming
barriers to clinical implementation, such as
regulatory approval and integration into rou-
tine and standard clinical workflows, will be
essential to realize the full potential of these
models to personalized medicine in neuro-on-
cology, and paving the way for more effective
therapeutic strategies [76].

Clinical Application

Integrating radiomics models with clinical
protocols for managing glioma has the po-
tential to revolutionize personalized care. Ra-
diomics can extract high-dimensional imag-
ing features from PET and other modalities,
providing non-invasive biomarkers that com-
plement conventional clinical factors. When
incorporated into existing protocols, these
models can help physicians as a diagnostic aid

tool for tumor classification, guide treatment
planning, and predict outcomes of glioma pa-
tients with greater precision before the treat-
ment. Furthermore, radiomics-based models
could assist in preoperative assessments, op-
timize radiotherapy dosing, and differentiate
post-treatment changes from recurrence for
each patient. However, successful integra-
tion requires rigorous validation, standardiza-
tion of imaging protocols, and harmonization
across clinical centers to ensure the models are
reproducible, robust, and applicable in diverse
healthcare settings.

Conclusion

This systematic review highlights the po-
tential of PET-based radiomics as a promis-
ing approach for assessing post-treatment
changes and predicting prognosis in glioma
patients. The extraction and analysis of quan-
titative features from PET images, facilitated
by machine learning (ML) and artificial in-
telligence (Al) models, demonstrate superior
capability in distinguishing tumor progression
or recurrence from treatment-related changes
compared to conventional methods. Such ad-
vancements have great potential to enable per-
sonalized treatment strategies for improving
overall survival and quality of life in glioma
patients. Continued research and technologi-
cal innovations are anticipated to overcome
existing limitations, further enhancing the pre-
cision and clinical applicability of these tools
for glioma management.
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