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Introduction

Glioma is a heterogeneous group of primary brain tumors, with 
considerable chemical and histological heterogeneity, pos-
ing significant challenges to their treatment and management. 

Systematic Review

ABSTRACT
Background: The assessment of treatment-induced changes in glioma and the 
evaluation of glioma prognosis are crucial components of effective treatment manage-
ment. Radiomics models based on Positron Emission Tomography (PET) imaging can 
provide critical insights into therapeutic response monitoring. 
Objective: This systematic review aimed to evaluate the performance of PET-
based radiomics models in distinguishing treatment-related changes and predicting the 
prognosis of glioma.
Material and Methods: In this systematic review, the articles were searched 
from the Web of Science databases, MEDLINE, PubMed, and EMBASE. The search 
terms were “amino acid PET”, “PET”, “glioblastoma”, “glioma”, “positron emission 
tomography”, “machine learning”, “deep learning”, “radiomics”, “artificial intelli-
gence”, “AI”, “prognosis”, “outcome”, “post treatment changes”, “treatment-related 
changes”, “progression”, “true progression” “pseudo-progression”, and “necrosis”. 
The titles, abstracts, and full text of the recognized citations were reviewed by two 
independent reviewers and then the selected articles were abstracted by two indepen-
dent reviewers based on a standard grid. PRISMA checklist was applied to assess the 
overall quality of evidence for each outcome. 
Results: The PET-based radiomics models outperform conventional PET param-
eter models, such as maximum tumor-to-brain ratios and mean tumor-to-brain ratios 
in distinguishing post-treatment changes and predicting glioma prognosis. The model 
integrating radiomics features and the conventional PET parameters achieved superior 
diagnostic performance compared to radiomics and conventional parameter models 
solely in differentiation treatment related changes.  
Conclusion: PET based radiomics models demonstrate enhanced capability in 
differentiating tumor recurrence from treatment-related changes. The implementation 
of these models can facilitate personalized treatment plans and increase the patient’s 
overall survival or quality of life.
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Gliomas accounted for 26.3%, of all primary 
Central Nervous System (CNS) tumors and 
approximately 80% of malignant brain tumors 
[1, 2].

Glioma treatment typically employs a multi-
modal approach, aiming to remove or reduce 
tumor size while effectively managing asso-
ciated symptoms [3-6]. Tumor surgery is of-
ten the first step to preserving brain function 
while removing the tumor completely. Due to 
the aggressive behavior, postoperative exter-
nal beam radiation, concurrent Temozolomide 
(TMZ) chemotherapy, and additional adju-
vant temozolomide were administered after 
surgery to target remaining tumor cells and 
lower the chance of recurrence [7, 8]. The use 
of these combination therapies has been as-
sociated with improved median survival rates 
for glioma patients [9]. Despite the postopera-
tive care, the median Overall Survival (OS) 
for these patients is just fifteen months [10]. 
Gliomas present notable challenges in clinical 
management due to their diverse histological 
and molecular characteristics. One of the criti-
cal issues in glioma treatment is the accurate 
differentiation between post treatment or treat-
ment-related changes, including Pseudopro-
gression (PSP), Radio-necrosis (RN), and true 
glioma progression, including progression/re-
currence because each requires distinct thera-
peutic interventions with a significant effect 
on patient prognosis and outcomes. Moreover, 
monitoring tumor progression is essential in 
these patients after treatment, as it helps deter-
mine the next steps in their care. Confirming 
whether a tumor is recurring or progressing 
informs surgeons and patients about the best 
treatment strategy [11, 12]. 

Previous studies have indicated the im-
portance of imaging modalities including 
Positron Emission Tomography (PET) and 
Magnetic Resonance Imaging (MRI) in ac-
curately characterizing glioma progression, 
pre and post treatment management [13-18]. 
Advanced imaging techniques, such as amino 
acid PET including O-(2-[18F] fluoroethyl)-L-

tyrosine (18F-FET), 18F-fluorodeoxyglucose 
(18F-FDG), 11C-methionine (11C-MET), 
3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine 
(18F-DOPA), and 11C-choline (11C-CHO) 
[10, 19-21] and cerebral blood volume (CBV) 
evaluation with perfusion-weighted MRI, and 
Magnetic Resonance Spectroscopy (MRS), 
suggest deeper analysis of tumor characteris-
tics and microenvironment than conventional 
MRI. Several studies represented superior per-
formance for amino acid PET, such as MET 
PET (accuracy of 89.6%) [19], DOPA (accu-
racy of 82%) [22], and FET (accuracy rang-
ing between 81% and 99%) [23, 24] for dis-
tinguishing glioma post treatment recurrence/
progression and provide complementary and 
comparable information to the MRI as a gold 
standard. They represented that amino acid 
PET can be an essential tool for distinguishing 
tumor progression/recurrence from PSP, and 
radiation necrosis [10].

In recent years, radiomics, Artificial Intel-
ligence (AI), Deep Learning (DL), and Ma-
chine Learning (ML) have enhanced research 
on glioma patients [12, 13, 15, 17, 25-29]. 
Accordingly, PET imaging and advancements 
in radiomics analysis hold promise in provid-
ing quantitative and qualitative insights into 
glioma behavior and helping in distinct diag-
nosis, distinguishing recurrence from treat-
ment-associated modifications, and treatment  
strategizing [15]. 

Regardless of growing interest in the use of 
radiomics and PET imaging for glioma char-
acterization, a need for a systematic review to 
explore the application of PET-based radiomic 
models has remained for prognosis and post-
treatment assessment in glioma. This study 
aimed to systematically investigate the capa-
bilities of PET-based radiomics and AI models 
for the investigation of prognosis and differen-
tiation post-treatment changes, including pro-
gression, recurrence, PSP, and radio-necrosis 
in glioma patients. The present study aimed to 
clarify the diagnostic and prognostic utility of 
these models and identify areas that need fur-
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ther research and clinical application.

Material and Methods

Eligibility Criteria
The present study included cross-sectional, 

case-control, cohort, and studies assessing the 
relevance of PET-based AI models (radiomics, 
ML, and DL models) in assessing prognosis 
and differentiating glioma progression or re-
currence from treatment-related changes. Case 
reports, case series, review articles, editorials, 
and commentary and abstracts of articles were 
excluded from the study. The study also ex-
cluded papers evaluating MRI-based AI mod-
els, studies assessing glioma segmentation and 
Isocitrate Dehydrogenase (IDH)-mutant with 
AI.

Search Strategy
In June 2024, the following databases were 

electronically searched from January 1st, 2005, 
to June 31st, 2024 including Web of Science 
databases, MEDLINE, PubMed, and EM-
BASE using a detailed search strategy with 
no language restriction. The search terms used 
were “amino acid PET”, “PET”, “glioblas-
toma”, “glioma”, “positron emission tomog-
raphy”, “machine learning”, “deep learning”, 
“radiomics”, “artificial intelligence”, “AI”, 
“prognosis”, “outcome”, “post treatment 
changes”, “treatment-related changes”, “pro-
gression”, “true progression” “pseudo-pro-
gression”, and “necrosis”. The study’s meth-
odology was derived from an initial review 
of related literature and a comprehensive in-
ternet search approach of systematic reviews 
of radiation therapy outcomes and PET based 
radiomics, ML, and DL models. The search 
strategy was reviewed and commented on by 
two independent medical librarians. In addi-
tion, the reference list of related papers includ-
ed in the study was examined. Afterward, the 
results were hand-searched based on the titles 
and abstracts to exclude studies according to 
exclusion criteria.

Selection process
The titles and abstracts of the recognized ci-

tations were reviewed by two independent re-
viewers using a standardized screening guide. 
We retrieved the full text of all citations rec-
ognized as qualified by at least one reviewer. 
A standardized, pilot-tested format was then 
used by two reviewers to independently screen 
the full text for eligibility. Third reviewers 
were contacted to resolve disagreements.

Data abstraction
The selected articles were abstracted by two 

independent reviewers based on a standard 
grid comprising the following items: purpose 
of the study, comparison method, training, 
dataset, models, validation, test, Area Under 
Curve (AUC), sensitivity and specificity, accu-
racy, and conclusion. In addition, to assess the 
methodological quality of the involved stud-
ies, two reviewers used the Radiomic Qual-
ity Score (RQS) [30], a tool based on sixteen 
items that indicates the quality of radiomics 
study. Results of analyses restricted to PET 
based AI models were recorded for prognosis, 
post treatment changes, and radiotherapy out-
comes in glioma patients. PRISMA checklist 
was used to evaluate the overall quality of evi-
dence for each outcome.

Results

Study selection
A total of 1056 articles were found in the 

initial literature review. Title and abstract 
screening were done, and after that 112 stud-
ies were selected for full-text screening, of 
which 101 studies were excluded. Finally, 11 
articles were included in the systematic review  
(Figure 1). Duplicate and conference data 
were the most common exclusions.

PET radiotracer
The majority of included studies (10 stud-

ies) (Table 1) focused on radiolabeled amino 
acid PET. Amino acid radiotracers, including 
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6 studies used O-(2-[18F] fluoroethyl)-L-tyro-
sine (FET) [31-37], 2 studies utilized L-3,4-di-
hydroxy-6-[18F]-fluoro-phenylalanine (18F-
DOPA), and 2 studies used 11C-methionine 
(MET). In addition, one study used a nucleo-
side analog probe: 3’-deoxy-3’-18F-fluoro-
thymidine (FLT) (Table 1).

PET Radiomics for differentiation 
post treatment changes from glioma 
progression

The results revealed that radiomics, ML, 
and DL models based on PET imaging dem-
onstrate superior performance in differentiat-
ing post treatment changes in comparison to 
conventional PET parameters, such as maxi-
mum Tumor-to-Brain ratios (TBRmax), mean 
Tumor-to-Brain ratios (TBRmean), and Time 
to Peak (TTP) models in glioma patients [13, 
32, 33, 37]. In addition, the model integrating 
radiomics features and the conventional PET 
parameters achieved superior diagnostic per-
formance compared to radiomics and conven-
tional parameter models solely (AUC of 0.85, 
0.85, 0.78, sensitivity of 0.81, 0.73, 0.66, and 
specificity of 0.70, 0.80, 0.80, respectively) in 
distinguishing treatment‑related changes from 

glioma progression [33]. The dynamic PET 
imaging dataset outperformed static imaging-
based models, with the combined dynamic 
and static feature models. The AUC values for 
dynamic, combined static/dynamic, and static 
models were 0.805, 0.79, and 0.715, respec-
tively, in a cohort of 85 patients [13]. The ran-
dom forest model utilizing MET PET achieved 
highest performance in distinguishing recur-
rent brain tumor from radiation necrosis, with 
an AUC of 0.98 in 41 patients [38]. The FET 
PET radiomics models achieved an AUC of 
0.93 for Linear Discriminant Analysis (LDA)-
model [31], 0.85 for Logistic regression mod-
el [33], 0.74 [37], and 0.85 [35] for random 
forest in post treatment differentiation. The 
findings from the 18F-DOPA PET radiomics 
models demonstrated AUC values of 0.715 for 
static features and 0.805 for dynamic features 
when using the ElasticNet logistic regression 
model [13], For the XGBoost (XGB) model, 
the AUC values were 0.715 and 0.755 for stat-
ic and dynamic datasets, respectively, while 
the random forest model achieved AUC val-
ues of 0.832 and 0.749 for static and dynamic 
datasets, respectively [13]. Table 2 showed the 
results of PET based radiomics models for dif-

Figure 1: Database and register flow diagram for identifying studies
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ferentiation treatment related changes in glio-
ma patients.

PET Radiomics for glioma survival 
stratification and prognosis

Generally, PET based DL and radiomics 
models represented higher performance than 

conventional models for predicting tumor pro-
liferation, recurrence and survival of glioma 
patients (Table 2).

As compared to conventional clinical pa-
rameters alone, the combination of clinical pa-
rameters and radiomics using pretreatment dy-
namic FET PET data improved the prognostic 

Author 
(year)

Number of 
Patients (Mean 
age and range 

(year))

Tumor Characteristics
Post or Pretreatment PET 

imaging 
Fallow 

up 
Imaging 
modality

Ahrari et al. 
[13] (2021)

85, 57 (21,80)

IDH-mutant anaplastic astrocytoma (8), 
IDH-wildtype anaplastic astrocytoma (12), 

IDH-mutant and 1p/19q anaplastic oligoden-
drogliomas (10), IDH-mutant glioblastomas (6), 

IDH-wildtype glioblastomas (49)

Post treatment PET imaging 6 months 18F-DOPA PET

Lohmann 
et al. [32] 

(2020)
34 ,57±12

IDH-wildtype glioblastoma (32), IDH-mutant 
glioblastoma (1), IDH-wildtype anaplastic 

astrocytoma (1)
Post treatment PET imaging

>2 
months

18F-FET PET

Kebir et al. 
[31] (2020)

44, 51 (34–79) Primary IDH-wildtype glioblastoma Post treatment PET imaging
91.3 
days

18F-FET PET

Muller et al. 
[33] (2022)

151, 52.3 
(20.4–78.0)

Oligodendroglioma (17), IDH-mutant Astro-
cytoma (34), IDH-wildtype Astrocytoma (17), 
IDH-wildtype Glioblastoma (71), IDH-mutant 

Glioblastoma (11), Gliosarcoma (1)

-
>6 

months
18F-FET PET 

Hotta et al 
[38] (2019)

41, 55.5±13.2 Metastatic brain tumor (21), Glioma (20) Post treatment PET imaging
>6 

months
11C-MET PET

Paprottka 
et al. [35] 

(2021)

66, 55 
(54.91±12.2)

Glioblastoma (51), Astrocytoma (9), Oligoden-
droglioma (13), Polycystic Astrocytoma (1)

Post treatment PET imaging
>12 

months

18F-FET PET + 
DSC perfusion + 

APTw
Li et al. [36] 

(2023)
141, 59.3 

(19.0–77.2)
IDH-wildtype glioblastoma Pretreatment PET imaging

<12 
months

18F-FET PET

Carles et al. 
[34] (2021)

32, 52 (30–77)
IDH-wildtype glioblastoma (14), IDH-mutant 
glioblastoma (10), Unknown glioblastoma (8)

Pre-rirradiation PET imaging
>3 

months
18F-FET PET

Mitamura 
et al. [39] 

(2017)
37, 55.8 (8–84)

Diffuse astrocytoma (4), Anaplastic astrocytoma 
(9), Anaplastic oligodendrogliomas (2) Anaplas-

tic ependymoma (1), Glioblastomas (21)
Pretreatment PET imaging

>12 
months

18F-FLT PET

Shahzadi 
et al. [40] 

(2024)
132, 61 (24–77)

IDH-wildtype glioblastoma (119), IDH-mutant 
glioblastoma (8), Unknown glioblastoma (5)

Post operative and pre Chemora-
diotherapy PET imaging

58 
months

11C-MET PET 
+ gadolinium-

enhanced T1-w

Ahrari et al. 
[25] (2024)

18, 62 (45–69) High-grade glioma

First PET imaging during treatment 
and the second PET imaging at 

the time of adjuvant temozolomide 
(TMZ) chemotherapy 

> 1 year 18F-DOPA PET

DSC: Dynamic Susceptibility Contrast Imaging, APTw: Amide Proton Transfer-Weighted MRI Imaging, IDH-mutant: Isocitrate 
dehydrogenase, (18F-DOPA) PET: 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine Positron Emission Tomography, (18F-FET) 
PET: O-(2-[18F] fluoroethyl)-L-tyrosine Positron Emission Tomography, (11C-MET) PET: 11C-methionine Positron Emission 
Tomography, (18F-FLT) PET: nucleoside analog 3-deoxy-3′-18F-fluorothymidine Positron Emission Tomography

Table 1: Tumor and image characteristics of included studies

PET Radiomics for Glioma Treatment Related Changes
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m
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Ahrari et al. 
[13] (2021)

Diagnosing treatment-
related changes from 

high-grade glioma pro-
gression using DOPA 

PET static and dynamic 
radiomics

XGBoost (XGB), Ran-
dom Forest, Elastic-

Net logistic regression 
[5-folds CV]

Accuracy, 
AUC, F1, 
Precision, 
Balanced 
Accuracy

Pyradiomics (Nov 
2021), scikit-learn 
Python package 

(Nov 2021), 
XGBoost Python 

package (Nov 
2021)

94 radiomic features 
including statistical, 

histogram-based, texture 
and intensity features

18F-
DOPA PET 
(static and 
dynamic 

DOPA PET)

The AUC values of LR model for dynamic, static, and combining of static/
dynamic features were 0.805, 0.715 and 0.79, respectively. The dynamic da-
taset led to better findings than the static model (P<0.001). RF AUC value 
was 0.749 and XGB AUC was 0.715 for static datasets, and dynamic features 
had AUC of 0.832 and 0.755 (P<0.001 for the dynamic and static models’ 
comparisons). RF and XGB models combining static and dynamic datasets 
and represented respective AUC of 0.834 and 0.804 for each model (both su-
perior to static models, P<0.001). Best radiomics models represented a little 
better performance than the reference tumor-to-background (TBR) model 

(AUCs of 0.834 and 0.792, respectively, P< 0.001). 

Lohmann 
et al. [32]

(2020)

Differentiating PSP from 
early tumor progres-
sion using FET PET 

radiomics

Random Forest 
[7-folds CV, adjusted 

rand index (ARI)]

Sensitivity, 
Specificity, 
PPV, NPV, 
FNR, FPR, 

Accuracy, F1, 
MCC, AUC

Pyradiomics (ver-
sion 3.0), Python 

package.

107 features including 
first order, shape, texture 
features GLCM, GLRLM, 
GLSZM, NGLDM, GLDM

18F-FET 
PET (static 
FET PET)

The FET PET radiomics model properly identified all PSP patients with 70%
 

accuracy in the test dataset (AUC, 0.74; specificity of 40%
; sensitivity of 

100%
; P=0.017). TBRmax was the best parameter for FET PET and showed 

sensitivity of 81%
; and negative predictive value of 80%

. 

Kebir et al. 
[31] (2020)

Analysis of dynamic 
and static FET-PET 
models for detecting 
PSP of TP in IDH-

wildtype GBM 

Linear Discriminant 
Analysis (LDA)- clas-
sifier [3-folds stratified 

CV]

AUC, 
Sensitivity, 
Specificity

Python (version 
3.7.1), R (version 

3.5.3)
TBRmax, TBRmean,TTP

18F-FET 
PET (dy-

namic FET 
PET)

In the TP group in comparison to the PSP group TBRmax and TBRmean were 
higher significantly (P=0.033 and P=0.014, respectively). TTP's classification 
performance was the poorest, with an AUC of 55%

. For the accurate detec-
tion of PSP, the AUC values for TBRmax and TBRmean were 0.68 and 0.74, 
respectively. The AUC (0.93) for the LDA-based approach was significantly 
greater than the TBRmax AUC. The AUC of classification increased to 93%

 
(95%

 CI, 78–100%
; sensitivity) by applying LDA model. 

Muller at al. 
[33] (2022)

Static clinical FET PET 
using radioomics can 
distinguish treatment-
related changes from 
tumor progression in 

gliomas

Logistic regression 
models [NA]

AUC, 
Sensitivity, 
Specificity

RadiomiX toolbox 
(Oncoradiomics, 

Liège, Belgium) in 
Matlab, R (version 

4.0.5, R Studio, 
Inc., Boston, MA, 

USA).

TBRmax, TBRmean, 221 
features including first 
order statistics, shape, 

GLCM, GLRLM, GLSZM, 
and features

18F-FET 
PET 

(dynamic 
PET)

In the test dataset, the logistic regression model based on the TBRmean and 
TBRmax produced an AUC value of 0.78, sensitivity of 0.66, and specificity of 
0.80. In the test dataset, the model that was exclusively based on radiomics 
features produced an AUC value of 0.85, sensitivity 0.73, and specificity of 
0.80. The greatest diagnostic performance was achieved by the model that 
combined the parameters of standard FET PET with two radiomics character-
istics, yielding an AUC value of 0.85, sensitivity value of 0.81, and specificity 

value of 0.70.

Table 2: The radiom
ics, m

achine learning, and deep learning m
odels’ characteristics and their perform

ance of the including studies
Mahsa Shakeri, et al
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Hotta et al. 
[38] (2019)

Distinguishing a recur-
rent brain tumor from 
radiation necrosis by us-
ing 11C-MET radiomics 

models

Random forest 
[10-folds CV]

AUC, Gini 
Index

R package
42 PET features including metabolic 

tumor volume, conventional SUVmax, 
texture features

11C-MET PET

MET PET radiomics model and tumor-to-normal cortex 
(T/N) ratio investigation showed AUC values of 0.98 
and 0.73, sensitivity values of 90.1%

 and 60.6%
, and 

specificity values of 93.9%
 and 72.7%

, respectively. 
The most relevant feature for distinguishing recurrence 
from radiation necrosis was gray level co-occurrence 

matrix (GLCM) dissimilarity.

Paprottka 
et al. [35] 

(2021

FET-PET, MRI, APTw, 
and 

DSC 
perfusion 

data 
used 

to 
distin-

guish tumor progression 
from 

treatment-related 
changes in gliomas

Random Forest clas-
sifier [3-folds CV]

AUC, accura-
cy, sensitivity, 

specificity

MATLAB (MathW
orks, 

Natick, MA, USA), scikit-
learn implementation

5
th, 25

th, 50th, 75
th, and 95

th percentile 
intensity, Shannon Entropy, interquar-
tile Range, Volumes of hot-spot areas

18F-FET PET + 
DSC perfusion 

+APTw

The Random Forest classifier trained with FET-PET, 
DSC-derived cerebral-blood-volume (CBV) intensity 
maps and APTw, resulted AUC value of 0.85, accuracy 
value of 0.86, sensitivity value of 0.91, and specificity 
value of 0.71 for the recognition progressive disease 
(PD) from treatment-related changes. Random Forest 
represented significantly higher performance (P=0.03) 
compared to MRI with an accuracy value of 0.82 sen-
sitivity value of 0.95, specificity value of 0.41, and FET-
PET with accuracy value of 0.81, sensitivity value of 

0.81, specificity value of 0.82. 

Li et al [36] 
(2023)

Analysis of static and 
dynamic 

FET 
PET 

features 
in 

newly 
di-

agnosed 
IDH-wildtype 

GBM in order to stratify 
survival

Linear Regression 
[5-folds CV]

AUC, accu-
racy, sensitiv-
ity, specificity, 
positive pre-

dictive values 
(PPV), nega-
tive predictive 
values (NPV)

Pyradiomics (version 
3.0.1), Python (version 
3.8.5) using scikitlearn 

package (version 0.24.1)

First-order, shape, and texture 
features, which were extracted from 

TBR (79 features) and TTP images (94 
features)

18F-FET PET 
(static and 

dynamic PET)

A clinical-radiomic model in comparison to clinical pa-
rameters and dynamic radiomic features resulted in 
the highest level of predictability of short-term survival 
with an AUC value of 0.74, sensitivity value 0.667 and 
specificity value 0.70 in the independent testing cohort.

Carles et al 
[34] (2021)

Identifying 
recurrence 

GBM (rGBM) patients 
after re-irradiation using 
prognostic model based 
FET PET radiomics fea-

tures (RF)

Binary logistic re-
gression [imbalance-
adjusted bootstrap 

resampling]

AUC, Correla-
tion, Kaplan–
Meier curve 
performance

In-house software based 
on MATLAB® (The 

MathW
orks Inc., Natick, 

MA).

135 features included SUV-Histogram 
group, Geometry, texture features: 
GLCM, GLRLM, GLSZM, NGTDM

18F-FET PET

In terms of time-to-progression prediction, Small-
Zone-Low-Gray-Level-Emphasis (SZLGE) showed the 
best results (P=0.001). Results represented moderate 
recurrence location (RL) predictions with an AUC: 0.66 
and sensitivity: 0.78 for the TTP-radiomics-signature 
and 0.63 and 0.79 for SZLGE, respectively. The results 
demonstrated the effectiveness of FET-PET radiomics 
for prognostic assessment and selecting rGBM-pa-

tients benefiting from re-irradiation.

PET Radiomics for Glioma Treatment Related Changes
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accuracy for short-term survival assessment of 
patients with newly diagnosed IDH-wildtype 
glioblastoma [36]. The FET-PET demonstrated 
potential in predicting recurrence in glioblas-
toma (GBM) patients undergoing re-irradia-
tion, with an AUC and sensitivity of 0.66 and 
0.78, respectively [34]. In addition, the 3D-
DenseNet model based on postoperative 11C-
MET PET demonstrated strong performance 
in identifying residual tumors, achieving an 
AUC of 0.95. In terms of time to recurrence 
(TTR) and OS prognosis, the 3D-DenseNet 
model based on MET PET, which incorpo-
rated age and O6-methylguanine-DNA meth-
yltransferase (MGMT) promoter methylation 
status achieved the best performance, with 
concordance indices of 0.68 for TTR and 0.65 
for OS [40]. In addition, 18F-DOPA delta ra-
diomics, using Recursive Feature Elimination 
(RFE) and Support Vector Machine (SVM) 
represented high performance in predicting 
progression‑free survival in rare high‑grade 
glioma, with a concordance index of 0.751 
(95% CI: 0.716–0.784, P-value=0.06) [25].

Discussion
The present study is a systematic review 

on relevant clinical topics and challenges of 
glioma prognosis and distinguish treatment 
related changes, including progression, PSP, 
and RN using PET based radiomics models. 
This review summarizes the key findings and 
discusses their implications for practice. Such 
a review is essential for advancing personal-
ized medicine in the care of glioma patients 
and ultimately improving patients’ treatment 
outcomes and quality of life.

In the course of glioma treatment, progres-
sion or recurrence, PSP, and RN are all po-
tential outcomes [41]. Approximately 60% 
of patients with low-grade gliomas expe-
rience tumor recurrence within five years  
[42, 43], while around 40% of grade III glio-
mas and 90% of grade IV gliomas progress 
within two years [42, 44]. Recurrence in gli-
oma, particularly in high-grade forms, such as  

glioblastoma, remains a significant challenge 
in neuro-oncology. Gliomas, characterized 
by diffuse infiltration of adjacent brain tissue, 
frequently recur despite aggressive treatment 
approaches, including surgery, radiation, and 
chemotherapy. Recurrence is typically local-
ized to the primary tumor site, few centimeters 
around the tumor bed and the resection site, 
although multifocal or distant recurrences can 
also occur [45, 46]. Even with the addition of 
temozolomide to GBM radiation therapy, the 
most common site of initial recurrence re-
mains local failure [4, 45, 47-49]. The mecha-
nisms driving glioma recurrence are complex 
and multifactorial, involving intrinsic and 
adaptive tumor cell resistance, tumor hetero-
geneity, and immune evasion [50, 51]. 

Abbasi et al. represented that PSP happened 
in 36% of (95% confidence range, 33–40%) 
high-grade glioma patients and can occur in up 
to 20% of individuals following routine temo-
zolomide chemoradiotherapy [52]. Through 
PSP, inflammation, edema, endothelial dam-
age, abnormal capillary permeability, Blood 
Brain Barrier (BBB) disruption and oligoden-
droglia injury can cause a new or increased 
contrast enhanced lesion after chemoradiation 
(mostly during six months after treatment)  
[2, 18, 41]. The chance of developing diseases 
is raised within three months to years after the 
therapy and occurs mostly in MGMT-methyl-
ated tumors treated with TMZ [2, 41, 53]. 

Furthermore, among patients with malignant 
gliomas, RN is a severe radiotherapy-induced 
local tissue response. In most cases, it occurs 
within three to twelve months of radiation 
therapy, but it can occur years later as well 
[53]. RN is characterized by endothelial dam-
age, severe neurotoxicity, the release of tumor 
necrosis factor-alpha (TNF-), damage to the 
BBB, glial damage, and deteriorating of ede-
ma that causes the emergence of new regions 
displaying abnormal improvement simulating 
true progression and recurrence [2, 53]. Sev-
eral pathological criteria classified RN from 
other glioma-post treatment circumstances, 
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including histological examination, gliosis, 
edema, hyalinization, endothelial thickening, 
thrombosis, vessel occlusion, and fibrinoid de-
position [2, 54]. The majority of radiation ne-
crosis occurs in regions that receive the high-
est radiation dose, typically near the tumor site 
and within the resected tumor surgical cavity 
[54]. On traditional MRI, it can be difficult to 
distinguish RN from tumor progression, as 
contrast-enhancing masses on T1-weighted 
contrast-enhanced imaging are often similar 
to those seen in tumor recurrence [2, 55]. 

Radiotracers play a crucial role in diagnos-
ing and treating gliomas. Traditional MRI is 
extremely difficult to use in routine clinical 
care or clinical trials to determine whether a 
tumor has responded, especially in pre-con-
trast T1-weighted images [56]. In order to 
manage brain tumors, Response Assessment 
in Neuro-Oncology group (RANO) recom-
mended radiolabeled amino acid PET [57]. 
Among the various tracers in PET imaging for 
glioma, 18F-FET, 11C-MET, 18F-DOPA, and 
11C-CHO are particularly notable, due to their 
ability to highlight various aspects of tumor 
biology and metabolism [13, 17, 58, 59]. 

The results demonstrated the higher perfor-
mance (higher AUC, sensitivity and specific-
ity) of radiomics, ML, and DL models over 
conventional PET parameters-based models 
in distinguishing glioma treatment related  
changes [13, 31, 33]. This enhanced perfor-
mance may be attributed to the ability of ra-
diomics analysis to extract a diverse set of 
quantitative features from medical images, 
including texture, shape, and intensity char-
acteristics. These comprehensive features can 
capture subtle changes in tissue characteris-
tics that might not be apparent through tradi-
tional visual inspection or even conventional 
PET metrics including Standard Uptake Value 
(SUV) or TBR. These additional features can 
provide a more precise understanding of the 
tumor microenvironment and response to ther-
apy, leading to improved diagnostic accuracy 
[13, 60].

In addition, radiomics models use advanced 
mathematical algorithms to analyze the com-
plex relationships within the extracted fea-
tures. These algorithms can recognize patterns 
and correlations that are difficult for human 
observers to perceive [33, 60]. Furthermore, 
advanced techniques, such as principal com-
ponent analysis, recursive feature elimina-
tion, and logistic regression are applied in ra-
diomics models to achieve higher predictive 
values and better distinguish treatment-related 
changes from tumor progression or recurrence 
[60]. 

FET, as a tyrosine analog, which is absorbed 
into the glioma cells via the L-type amino acid 
transporter, is used to monitor the amino acid 
transport capacity of brain tumors, related 
to tumor proliferation. The high sensitivity 
and specificity of FET PET in distinguishing 
glioma recurrence have been confirmed by 
several studies [61, 62]. Sensitivity typically 
ranges from 70% to 90%, indicating the per-
centage of actual glioma recurrences correctly 
identified by the test/model [62]. In evaluat-
ing model performance, sensitivity refers to 
the True Positive Rate (TPR), which estimates 
the proportion of real positive cases that the 
model correctly identifies (i.e., accurate de-
tection of glioma recurrence). The specific-
ity of a model refers to its ability to correctly 
identify actual negative cases (i.e., accurate 
detection of non-recurrence). High values for 
both sensitivity and specificity indicate that 
FET PET performs exceptionally well in ac-
curately detecting recurrences and excluding 
non-recurrences in patients with gliomas [62]. 
A high sensitivity is essential for minimizing 
false negatives, which could lead to missed di-
agnoses of recurrences. Meanwhile, FET PET 
has a specificity of 60% to 90%, indicating a 
higher proportion of true negative results. This 
is a measure of the percentage of glioma cases 
that are correctly identified as negative by the 
test or model. High specificity helps reduce 
false positives and thus avoids unnecessary 
invasive procedures or treatments [34-36].  
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Results showed high sensitivity and specific-
ity in detecting glioma recurrence and making 
it a valuable tool for monitoring therapeutic 
response and diagnosing disease progression 
[21, 62-65]. FET is the most widely used clini-
cal and available tracer, and these results dem-
onstrate its usefulness in detecting glioma re-
currence accurately and precisely. This could 
explain why most of the studies reviewed used 
FET-PET models [23, 31, 32, 34-36]. Paprottka 
et al. concluded that the random forest model, 
combining FET PET data with advanced MRI 
imaging techniques, assesses disease progres-
sion with a sensitivity of 91% and a specific-
ity of 70% [35]. Kebir et al. also developed 
a linear discriminant model by using FET 
PET image radiomics information, achieving 
excellent detection of pseudoprogrossion in 
IDH-Wildtype glioblastoma with an AUC of 
0.93 in comparison to conventional PET pa-
rameters model TBRmax and TBRmean with 
AUC 0.68 and 0.74, respectively [31]. 

Another amino acid radiotracer is [11C] 
MET, which is actively transported into glio-
ma cells. Tumor amino acid uptake by MET 
reflects tumor cell proliferation and angio-
genesis. MET PET imaging has proven use-
ful in detecting glioma recurrence and guid-
ing treatment decisions, showing the highest 
sensitivity (90%) and specificity (87%) among 
the available radiopharmaceuticals, demon-
strated superior diagnostic power for recur-
rence detecting. As it displays an impressive 
90% sensitivity, it can detect even the smallest 
signs of recurrence, preventing missed diag-
noses and ensuring nearly all cases are iden-
tified. Furthermore, its exceptional specific-
ity of 87% allows for the confident exclusion 
of non-recurrence cases, thereby enhancing 
diagnostic reliability. These remarkable at-
tributes solidify MET’s position as a leading 
radiopharmaceutical for the precise evaluation 
of glioma recurrence [66, 67]. A group of re-
searchers demonstrated the high performance 
of a radiomic approach using a random forest 
classifier to distinguish recurrent tumors from 

RN with MET. Their results showed an area 
under the curve (AUC) of 0.98, along with a 
sensitivity of 0.90 and a specificity of 0.939 
[38]. Random forest is an ensemble learning 
algorithm that generates multiple decision 
trees during the training phase and determines 
the final classification based on the majority 
vote derived from the predictions of individual 
trees [68]. L. Breiman developed the random 
forest model in 2001, and it has since become 
highly successful in both classification and re-
gression tasks due to its robustness and ability 
to handle complex datasets [69]. Multiple de-
cision trees are combined to make predictions 
by averaging in settings where the number of 
variables exceeds the number of observations 
[69, 70]. It can also be adapted to a variety 
of ad hoc learning tasks and returns variable 
importance measures, which help identify the 
most influential features in the model’s predic-
tions [70]. Its advantage over other models lies 
in its capability to effectively handle complex 
datasets, deliver high predictive accuracy, and 
incorporate an inherent mechanism for evalu-
ating feature importance. stems from its abil-
ity to handle complex datasets, provide high 
accuracy, and provide built-in feature impor-
tance evaluation [69, 71].

DOPA serves as a precursor to dopamine 
and norepinephrine, neurotransmitters impli-
cated in pain modulation and stress response. 
Its accumulation in glioma cells, indicates the 
presence of functional dopamine transporters, 
which are often overexpressed in high grade 
glioma including glioblastoma. Studies have 
indicated that DOPA PET can effectively dif-
ferentiates glioma recurrence from treatment-
related changes, and providing valuable infor-
mation for patient management [10]. Recent 
studies reported that DOPA PET exhibits 
higher sensitivity and comparable specificity 
to FET PET in detecting glioma recurrence 
[10, 61, 72]. Notably, only two studies report-
ed higher sensitivity with FET PET compared 
to DOPA PET. It is important to mention that 
the current evidence supporting comparative 
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evaluation of these two imaging methods for 
assessing glioma recurrence is of very low 
quality. Therefore, further research is neces-
sary to obtain more definitive and clinically 
meaningful results [10, 61, 72]. The selection 
of a specific radiotracer for PET imaging in 
glioma is determined by the particular tumor 
biological characteristics to be evaluated, in-
cluding functional aspects of proliferation 
such as amino acid transport and glucose me-
tabolism to neurotransmitter synthesis. Each 
radiotracer provides distinct insights into the 
pathophysiology of glioma, thereby assisting 
in diagnosis, staging, and monitoring of tumor 
progression and treatment response [73, 74]. 

Ahrari et al. employed dynamic radiomics 
models and static DOPA PET including ran-
dom forest, ElasticNet logistic regression 
(LR), and XGBoost to differentiate high-grade 
glioma progression from treatment-related 
changes. Their results represented AUCs of 
0.834 for the best radiomics model (i.e., ran-
dom forest) which slightly outperformed the 
reference tumor-to-background (TBR) with an 
AUC of 0.792 (P<0.001). Additionally, their 
findings revealed a lower AUC of 0.79 for the 
LR model compared to the other models [13].

Interpreting these findings within the con-
text of specific studies and clinical scenarios 
is essential, considering several factors includ-
ing the imaging protocols, treatment effects, 
and patient population characteristics. It is 
important to recognize that imaging protocols 
can influence the reproducibility, robustness, 
and generalizability of radiomics features and 
models. When most data are derived from one 
or a few centers with specific protocols, the 
model may not generalize effectively to data 
acquired using different protocols. Therefore, 
standardization or harmonization of imaging 
protocols is essential to minimize these ef-
fects and improve the clinical utility of PET 
based radiomics [75]. In addition, glioma 
characteristics vary with age, as older patients 
often have more aggressive tumors and dis-
tinct genetic mutations (e.g., IDH mutations) 

[6]. Consequently, radiomics features derived 
from PET images may reflect these biologi-
cal differences, affecting model performance 
across different age groups. Moreover, varia-
tions in follow-up duration and the timing of 
early or late changes in imaging biomarkers 
may lead to misinterpreted if follow-up tim-
ing is not standardized, resulting in biased or 
incomplete training data for the models.

Another key application of radiomics mod-
els is in predicting tumor prognosis and pa-
tient survival. By analyzing radiomic features 
extracted from PET scans, researchers may 
be able to predict tumor prognosis and patient 
survival rates [36]. For instance, specific tex-
ture patterns or intensity distributions may be 
associated with tumor aggressiveness, thereby 
influencing survival time. Carles et al. demon-
strated that radiomics texture features derived 
from FET PET images were most effective in 
predicting time-to-progression (P=0.001) in 
glioblastoma. They suggested that FET-PET 
radiomics could play a valuable role in prog-
nostic evaluation and in identifying glioblas-
toma patients who may benefit from re-irradi-
ation [34].

Radiomic models can also support risk clas-
sification, helping recognize glioma patients 
at high risk of recurrence or poor response to 
standard treatments thereby informing person-
alized treatment strategies [25]. Shahzadi et 
al. demonstrated that a 3D-DenseNet model, 
based on MET-PET integrated with age and 
MGMT status, achieved the highest perfor-
mance in predicting overall survival and time 
to recurrence in glioblastoma patients, with 
Concordance Indices of 0.65 for overall sur-
vival and 0.68 for time to recurrence [40]. 

The present study has several limitations. 
The small number of studies included and 
their heterogeneity particularly in terms of 
patient demographics, follow-up durations, 
glioma subtypes, and imaging protocols, may 
limit the generalizability of the findings. Con-
sequently, further investigations involving 
additional models and PET radiotracers are 
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necessary to validate these results with greater 
accuracy. Moreover, selection bias may have 
influenced the studies, as patients unable to 
undergo surgery or chemoradiotherapy—of-
ten due to advanced-stage cancer or significant 
comorbidities—are frequently excluded. Ad-
ditionally, confounding factors such as tumor 
grade, gender, race, and other comorbid condi-
tions may affect treatment outcomes and ra-
diomics model performance. Therefore, these 
variables should ideally be controlled in future 
analyses to improve the reliability of the find-
ings.

Challenges and Future Directions
Although the potential benefits of PET based 

radiomic models in glioma management are 
significant, several challenges need to be ad-
dressed. The most important issue is the need 
for standardized protocols for image acquisi-
tion, feature extraction, and model develop-
ment to ensure reproducibility in studies. Ad-
ditionally, precise validation against clinical 
and pathological criteria for establishing the 
reliability and accuracy of these models, and 
integrating radiomic features with genomic, 
proteomic, and other clinical data can increase 
predictive power. Furthermore, overcoming 
barriers to clinical implementation, such as 
regulatory approval and integration into rou-
tine and standard clinical workflows, will be 
essential to realize the full potential of these 
models to personalized medicine in neuro-on-
cology, and paving the way for more effective 
therapeutic strategies [76].

Clinical Application
Integrating radiomics models with clinical 

protocols for managing glioma has the po-
tential to revolutionize personalized care. Ra-
diomics can extract high-dimensional imag-
ing features from PET and other modalities, 
providing non-invasive biomarkers that com-
plement conventional clinical factors. When 
incorporated into existing protocols, these 
models can help physicians as a diagnostic aid 

tool for tumor classification, guide treatment 
planning, and predict outcomes of glioma pa-
tients with greater precision before the treat-
ment. Furthermore, radiomics-based models 
could assist in preoperative assessments, op-
timize radiotherapy dosing, and differentiate 
post-treatment changes from recurrence for 
each patient. However, successful integra-
tion requires rigorous validation, standardiza-
tion of imaging protocols, and harmonization 
across clinical centers to ensure the models are 
reproducible, robust, and applicable in diverse 
healthcare settings.

Conclusion
This systematic review highlights the po-

tential of PET-based radiomics as a promis-
ing approach for assessing post-treatment 
changes and predicting prognosis in glioma 
patients. The extraction and analysis of quan-
titative features from PET images, facilitated 
by machine learning (ML) and artificial in-
telligence (AI) models, demonstrate superior 
capability in distinguishing tumor progression 
or recurrence from treatment-related changes 
compared to conventional methods. Such ad-
vancements have great potential to enable per-
sonalized treatment strategies for improving 
overall survival and quality of life in glioma 
patients. Continued research and technologi-
cal innovations are anticipated to overcome 
existing limitations, further enhancing the pre-
cision and clinical applicability of these tools 
for glioma management.
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