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ABSTRACT

Background: Manual analysis of electroencephalography (EEG) for epilepsy
diagnosis can be subjective and time-consuming, leading to potential errors. An
automatic classification system with high detection accuracy is essential for improving
diagnostic efficiency and reliability.

Objective: This study aimed to evaluate a comprehensive set of entropy measures,
along with embedding parameters, to identify the most effective single measure for
epilepsy diagnosis.

Material and Methods: This analytical study used EEG data from the
University of Bonn, including healthy controls (HCs) with open eyes and epileptic
seizure patients, each with 100 single-channel segments. Discrete wavelet trans-
form was applied, extracting ten entropy measures and two embedding parameters.
Statistical tests evaluated feature significance, and a linear discriminant analysis
(LDA) classifier was used for classification. Robustness was assessed by introducing
Gaussian noise at varying signal-to-noise ratios (SNRs) and analyzing classification
performance.

Results: Our findings indicated that embedding parameters, permutation entropy,
fuzzy entropy, sample entropy, norm entropy, sure entropy, log entropy, and threshold
entropy significantly differentiated epileptic patients from HCs. Among these, sample
entropy, norm entropy, sure entropy, log entropy, threshold entropy, and embedding
delay achieved classification accuracies between 97% and 100% using LDA classi-
fier. Furthermore, even with substantial Gaussian noise, the classifier maintained an
accuracy above 84%, demonstrating the robustness of these features in noisy
conditions.

Conclusion: This study demonstrated that embedding-based and entropy-based
features can serve as effective individual measures for discriminating epileptic EEG
signals from HCs. These findings underscore the potential of these measures in
automated epilepsy diagnosis systems, resulting in a robust and reliable tool for
clinical applications.
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Introduction
pilepsy is a common neurological disorder caused by disruptions
in brain electrophysiology, leading to recurrent, unpredictable
seizures. These seizures can result in loss of awareness, whole-
body convulsions, or, in severe cases, even death, highlighting the need
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for precise evaluation [1]. Electroencephalog-
raphy (EEG) is the primary noninvasive tool
for detecting and monitoring neurological
disorders, including epilepsy. It records brain
electrical activity through scalp-mounted elec-
trodes, each capturing the combined postsyn-
aptic activity of numerous neurons. With its
high temporal resolution, EEG provides direct
insights into brain function and is widely used
in clinical epileptology. However, visual EEG
interpretation is subjective, time-consuming,
and dependent on expert evaluation, mak-
ing it prone to errors. Furthermore, subtle but
clinically relevant EEG abnormalities may be
overlooked [2,3]. To address these limitations,
automated EEG-based epilepsy detection sys-
tems are essential for improving diagnostic ac-
curacy and efficiency.

Distinguishing epileptic patients from
healthy individuals fundamentally is a pattern
recognition challenge, where feature extrac-
tion plays a crucial role in diagnostic accu-
racy. The quality and relevance of extracted
features significantly impact classification
performance. Existing literature categorizes
features used in epilepsy diagnosis into sev-
eral groups based on different analytical ap-
proaches, as follows: 1) time-domain features:
statistical features [4,5], autoregressive (AR)
parameter estimation [6,7], Burg’s method
[8], and time-domain power band features
[9], 2) frequency-domain features: average
variance of instantaneous frequencies [8],
Fourier transform-based features [10], and
higher order spectra [11]), 3) time-frequen-
cy domain features: wavelet variances [12,
13], relative wavelet energy [14,15], empiri-
cal mode decomposition (EMD) [16], EMD
combined with discrete wavelet transform
(DWT) [17], and multi-wavelet transform
[18]), and 4) complexity features: Higuchi
fractional dimension, Hurst exponent, approx-
imate entropy, and sample entropy [11,18],
spectral entropy [15,19], log-energy entropy
[17,20], Sure entropy [20], embedding entro-
py, Kalmogorov—Sinai entropy, approximate

entropy [19], recurrence quantification analy-
sis (RQA) measures [21,22], wavelet packet
entropy [23], Reni entropy, Tallis entropy [24],
Lyapunov exponent [25], fractional linear pre-
diction [26], and permutation entropy [27]).

Biological signals, particularly EEG, are in-
herently nonlinear and non-periodic. As a re-
sult, traditional linear analysis methods, such
as the Fast Fourier Transform (FFT), often fail
to effectively distinguish between EEG sig-
nals from healthy individuals and those with
neurological disorders. Therefore, nonlinear
analysis techniques are essential for capturing
the complex dynamics of EEG signals and im-
proving classification accuracy [28].

State-space reconstruction is a dynamic anal-
ysis technique used for estimating embedding
measures efficiently. It represents the underly-
ing dynamics of a time series by reconstructing
its phase space [21]. While phase-space recon-
struction has been successfully applied to EEG
analysis [29-31], it has not, to our knowledge,
been specifically used to differentiate between
epileptic and healthy EEG signals. Investigat-
ing the feasibility of this approach could pro-
vide valuable insights into the discriminative
power of embedding parameters for epilepsy
detection. Furthermore, although various en-
tropy measures have been explored in epilepsy
classification, no study, to our knowledge, has
systematically compared the effectiveness of
different entropy measures and classifiers us-
ing the same EEG dataset. Addressing this gap
could enhance the reliability and accuracy of
automated epilepsy detection.

In this study, we evaluate the accuracy of
embedding delay, embedding dimension, and
various entropy measures in distinguishing
epileptic EEG signals from normal ones using
a linear discriminant analysis (LDA) classi-
fier, both in the presence and absence of noise.

Material and Methods

This study is an analytical research aimed
at distinguishing epileptic EEG signals from
normal ones. The following sections outline
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the dataset and methodological approach.

EEG data

In this study, the EEG signals were collected
by Andrzejak et al. [32] at the University of
Bonn, Germany. All signals were recorded
using a 128-channel amplifier system. The
dataset consists of five EEG segment sets
obtained from five healthy individuals under
eyes-closed (Set Z) and eyes-open (Set O)
conditions, as well as five epileptic patients
in different seizure stages: interictal (Set N),
ictal (Set F), and seizure (Set S). Each set
contains 100 single-channel EEG segments.
For this study, we selected two specific sets:
healthy control group (Set O), EEG recordings
from individuals with open eyes, epileptic sei-
zure group (Set S), and EEG recordings from
patients experiencing seizures.

Definition of selected features

State-Space Reconstruction

The behavior of nonlinear dynamic systems
can be represented as a trajectory in phase
space, where each point describes the system’s
state at a given instant (e.g., R). Phase space
is a mathematical construct defined by the
system’s dynamic variables. If a system con-
sists of n dynamic variables, its state at any
given time is represented as a point in R"-di-
mensional Euclidean space. As these variables
evolve over time, the trajectory of this point
forms an attractor, characterizing the system’s
dynamics.

To reconstruct the state-space representa-
tion, we utilized Takens’ embedding theorem,
a fundamental method in nonlinear time-series
analysis. Given a time series x(n); n=1,2,...,N,
the state-space vectors are constructed using
time-delayed embeddings, defined as:

7, :(x(t),x(t+r),x(t+2z'),...,x(t+(m—l)r)) t=1,.., N—(m—l)r(l)

Where X represents the reconstructed state-
space vector, m is the embedding dimension,
and 7 denotes the time delay.

A critical aspect of state-space reconstruc-

tion is determining the optimal values of 7 and
m. The ideal time delay (7) ensures that each
independent axis in the m-dimensional phase
space retains the signal’s information with
minimal correlation between dimensions, pre-
venting trajectory intersections [33]. Several
methods exist for selecting 7 and m. In this
study, we determined time delay (7) using the
first minimum of average mutual information
(AMI) and embedding dimension (m) using
the false nearest neighbor (FNN) method [34].

Average Mutual Information (AMI)

Fraser and Swinney proposed that the first
local minimum of the average mutual infor-
mation (AMI) function provides the optimal
time delay (7) for state-space reconstruction
[34].

AMI quantifies the predictable information
shared between a time-series value and its
delayed counterpart, measuring how much
knowledge of a past value helps in predicting
future values. The function is computed for
different values of 7 as follows:

)= 2Pl ston D )

Where P(x, x ) represents the joint probabil-
ity distribution of values at time i and i+z, and
P(x), P(x ) are the marginal probability distri-
butions. The optimal time delay (7) is selected
at the first minimum of /(z), ensuring minimal
redundancy while preserving the system’s dy-
namics.

False Nearest Neighbor (FNN)

The False Nearest Neighbors (FNN) method
determines the optimal embedding dimension
(m) by analyzing the behavior of point dis-
tances in phase space as the dimensionality
increases [34].

In this method, the distance between two
points in phase space is examined as the spatial
dimension D increases to D+/. If the distance
between two neighboring points in dimension
D significantly changes when projected into
dimension D+, the points are classified as
false neighbors. This indicates that the embed-
ding dimension D is insufficient to properly
reconstruct the system’s dynamics.
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The distances between a point X(¢) and its
rth nearest neighbor X(#,) in dimensions D and
D+1 are estimated as follows:

R (t.r) =1 X (1) = X (£)1P=30 [%ie =%, 5 P (3)

R12)+1 (t,r) = R[z) (l‘,l") +[xt—Dr _xtr—Dr]2 4)

Where R, and R, represent the Euclid-
ean distances in dimensions D and D+, re-
spectively. If the ratio exceeds a predefined
threshold (R ), the points are considered false
neighbors, indicating the need for a higher em-
bedding dimension. The optimal embedding
dimension (m) is the smallest D, where the
fraction of false neighbors approaches zero,
ensuring a well-reconstructed phase space
(see equation 5).

R (6r)— R (L) L
R
R} (2,7) 1= R ©®)

Entropy

Entropy is a nonlinear measure that quanti-
fies the complexity of a signal. A decrease in
entropy indicates a more regular time series,
suggesting a higher information rate within
the signal [35].

Among various entropy measures, approxi-
mate entropy (AppEn), sample entropy (Sam-
pEn), and fuzzy entropy (FuzzyEn) are widely
used. These methods estimate the predictabil-
ity of a signal by analyzing the conditional
probability of similarity between sequences.
Specifically, if two sequences in a time series
remain similar for m data points, these entropy
measures evaluate the likelihood that they will
also be similar at m+/ points.

These entropy metrics provide valuable in-
sights into the underlying dynamics of EEG
signals, aiding in distinguishing normal from
pathological patterns. The following sec-
tion provides a brief introduction to ten types
of entropy measures for signal complexity
analysis:

Approximate entropy (AppEn)

To identify specific patterns within a time se-
ries, approximate entropy (AppEn) establishes
a relationship between probabilities, measur-

[

ing the degree of similarity between different
segments of the signal. This similarity is deter-
mined using a tolerance threshold (), allow-
ing for the quantification of signal complexity
[36]. AppEn is calculated as follows:
C'(r)=n"(r)/(N—-m+1) (6)

N-m+1

Q" (n) =(N-m +1)_lzi:1

ApEn(m,r)z(p’" (r)—(om“(r) (8)

Where n/"(r) represents the number of
m-dimensional similar patterns whose pair-
wise distance is less than r.

Sample Entropy (SampEn)

Sample Entropy (SampEn) is an improved
version of AppEn that addresses its limita-
tions. Unlike AppEn, SampEn is less sensitive
to signal length, disregards self-matches, and
provides an unbiased estimate of complex-
ity, making it a more reliable measure [37].
SampEn is defined as:
SampEn(m,r,N)=—In(C"" (r)/C" (r)) (9)

Where C™(r) represents the number of m-
point sequences that remain similar within a
distance less than 7.

Fuzzy Entropy (FuzzyEn)

Fuzzy Entropy (FuzzyEn) is a relatively re-
cent method for quantifying the fuzziness and
uncertainty in a time series by defining the
similarity between vectors using a fuzzy ap-
proach. Unlike some traditional entropy mea-
sures, FuzzyEn is independent of data length,
making it a robust complexity measure [38].
FuzzyEn is computed as follows:

FEn(m,n,r,N)=In(¢" (n,r)=¢"" (n,r)) (10)

FEn (m,n, r, N) = In(e" (n, r) —p"" (n, r)) (11)
Where D" identifies the similarity between
two vectors with a distance less than r, embed-
ding dimension m, and gradient boundary 7.
In this study, the parameter values were
set as follows: n=2, r=0.15 of the standard
deviation of the time series, and m=2.
Shannon entropy (ShanEn)
This entropy quantifies a set of relational

InC"(r) ()
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parameters that vary linearly with the loga-
rithm of the number of probabilities. It is
mathematically expressed as:

ShanEn(x) = —ZkP(xk)x log, (P(x,)) O(M(N —1(12)

Where P(xk) represents the probability of
xk, and M denotes the number of levels of the
discrete-valued random variable X.

Spectral entropy (SEn)

Spectral Entropy (SEn) is a normalized form
of Shannon entropy that evaluates the spectral
complexity of a signal by analyzing the am-
plitude components of its power spectrum.
It provides insights into the distribution of
frequency components within the signa [3].
SpecEn is computed as follows:

SEn==Y" P(f,)xlog(P(f, DIKk(M (13)

Where P(fi) represents the normalized
power spectral density at frequency f;, and M
is the total number of frequency components.

Permutation Entropy (PermEn)

Permutation entropy (PermEn) quantifies
the complexity of a time series by identify-
ing couplings between successive data points,
capturing the presence or absence of specific
permutation patterns in the signal. Given a
time series x with an embedding dimension
of m and time delay of 7, the reconstructed
sequence is defined as follows [39]:

X(N—(m—l)r):{x(N—(m—l)T),x(N—(m—Z)r) ..... x(N)}s (14)

PermEn is given by:

PermEn = —ijlpj log, p, (15)

Where pj represents frequency related with
each possible sequence pattern, and n denotes
the permutation order, with n>2.

PermEn is an effective measure for analyz-
ing nonstationary, nonlinear, and chaotic time
series, even in the presence of dynamical
noise. It demonstrates robustness and compu-
tational efficiency, producing reliable results
with minimal sensitivity to noise. Due to its
low computational complexity, PermEn is
particularly well-suited for the analysis of
large datasets, making it a valuable tool in
various signal processing applications [39].

In this study, we selected an embedding di-
mension of 3 and a time delay of 1 to effec-
tively capture the temporal dynamics of the
signal.

Furthermore, wavelet packet decomposition
was applied to compute the following five en-
tropy measures, which are defined as follows
[40]:

Norm entropy (NormEn)

NormEn=zi|xiP,P21 (16)

Threshold entropy (ThreshEn)

ThreshEn = {i such that |xl.| > P} (PY0) (17)

ThreshEn quantifies the number of time
instants, at which the signal amplitude ex-

ceeds a predefined threshold. In this study, the
threshold value was set to 0.2.

Sure entropy (SureEn)
Eq, = N =#{i such that [x| < 2} + 3, min(x’, &%) (18)

Log Energy entropy (LogEn)
Eyp = log(x?) (19)

Where x represents the signal, and x, denotes
the coefficients of x in the orthonormal basis.
Additionally, p, P, and N correspond to pow-
er, the threshold value, and the signal length,
respectively.

Classification

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a su-
pervised classification technique that projects
data onto a new feature space by maximizing
the separation between predefined groups.
It achieves this by transforming the original
predictor variables into a single discriminant
variable that maximizes the variance between
classes while minimizing the variance within
each class.

LDA assumes that the independent variables
follow a normal distribution and that different
classes share a common covariance structure.
The algorithm calculates the mean vector for
each class and assigns a new observation to
the class whose mean vector is closest in the
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discriminant space. By ensuring the great-
est possible separation between class means,
LDA enhances classification performance in a
statistically optimal manner [41].

Proposed method

Figure 1 indicates a flowchart outlining the
analytical framework of this study.

In this study, EEG datasets from two groups,
healthy individuals with open eyes and pa-
tients with epilepsy, were preprocessed using
a Butterworth filter with a cutoff frequency
range of 0.5 to 40 Hz to remove unwanted
noise and artifacts. The signals were then de-
composed into frequency sub-bands using
Discrete Wavelet Transform (DWT), a linear
time-frequency analysis method particularly
well-suited for nonstationary signals like EEG
due to its high resolution in both time and fre-
quency domains.

DWT was applied to decompose the EEG sig-
nals into five levels, utilizing the Daubechies 4
(Db4) wavelet filter. This decomposition pro-
duced approximation and detail coefficients at
each level, which were then used to extract rel-
evant features. The extracted features included
the embedding dimension and embedding de-
lay of the state space, along with ten types of
entropy measures, namely: AppEn, SampEn,
ShanEn, FuzzyEn, SEn, PermEn, ThreshEn,
NormEn, SureEn, and LogEn.

Subsequently, statistical analysis was per-
formed to evaluate the significance of differ-
ences in the extracted features between the
two groups. The Mann-Whitney U test was

employed to compare the P-values between
the epileptic and healthy groups, assessing the
statistical significance of each feature. Addi-
tionally, the mean and standard deviation of
the extracted features were computed for both
groups to facilitate a comparative analysis.

The classification of EEG signals was per-
formed using an LDA classifier. To enhance
robustness and prevent overfitting, K-fold
cross-validation (K=10) was applied. The
classifier’s performance was evaluated using
key metrics, including classification accuracy,
specificity, and sensitivity.

Finally, to assess the robustness of the fea-
tures that achieved the highest accuracy on
clean EEG data, Gaussian noise was intro-
duced into the signals. The classification per-
formance was then analyzed across a range of
signal-to-noise ratios (SNRs) from 1 to 40 dB,
identifying the features that maintained their
accuracy under varying noise conditions.

Results

The statistical test results for embedding
parameters and the ten predefined entropy
measures comparing the healthy and epileptic
groups are summarized in Table 1. For each
feature, the mean and standard deviation were
computed for both groups. The results re-
vealed that the healthy group exhibited lower
values for embedding parameters compared to
the epileptic group, whereas entropy measures
were generally higher in the healthy group.

The analysis further demonstrated that
Embedding Parameters, PermEn, FuzzyEn,

Comparative Analysis

Classification

Feature
> Extraction

Input Data EEG Data Processing

P S ——————— 1 e et ——
| Raw Signal 1

i [

1 [ "

' i Preprocessing || Discrete
| Contaminated | | Wavelet
| withNoise | |

i — 11

Statistical
Analysis

Figure 1: Block diagram of the proposed method for distinguishing epileptic electroencephalog-

raphy (EEG) signals from normal EEG data.
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SampEn, NormEn, SureEn, LogEn, and
ThreshEn exhibited statistically significant dif-
ferences between the two groups. The P-val-
ues for these features indicated their potential
for significant differentiation (P-value<0.05),
suggesting their relevance in distinguish-
ing epileptic EEG signals from normal EEG
activity.

The performance metrics of the LDA classi-
fier are summarized in Table 2. These results
were obtained by investigating each feature in-
dividually. The LDA classifier achieved 100%

accuracy for SampEn, LogEn, and ThreshEn,
and over 97% accuracy for SureEn, NormEn,
and Embedding Delay.

Comparative analysis

The performance comparison of this study
with existing research on epileptic seizure de-
tection is summarized in Table 3. Table 3 pro-
vides an overview of various methodologies,
datasets, classifiers, and extracted features
used in previous studies, highlighting how
our approach compares in terms of accuracy,

Table 1: Mean and Standard Deviation (SD) of entropy measures and embedding parameters
extracted from the healthy and epileptic patient groups.

Healthy Patient

Features Mean D Mean D P-Value
Approximate Entropy 0.89 0.10 0.90 0.1 1.02x10"

Sample Entropy 0.06 0.01 0.00 0.00 2.8x102

Permutation Entropy 1.37 0.04 1.04 0.09 4x10°3

Fuzzy Entropy 0.03 0.01 0.00 0.00 2.56x1073
Shannon Entropy -5.9x10 2x10* -6x10%® 5x10* 5.76x102
Spectral Entropy 0.77 0.00 0.76 0.01 4.8x10
Norm Entropy 7.7x10% 2x10" 6.17x10% 0.1 1.81x10°
Threshold Entropy 5.7x10% 3.4x10% 1.7x10" 0.26 9.01x10%
Log Entropy 9.3x10% 1.6x10" 6.7x10% 0.19 3.27x10°
Sure Entropy 8.4x10%? 2.4x10"" 9.37x10" 0.21 2.76x10°
Embedding delay 6.90 1.04 1.25%x10" 6.75 4.48x10%
Embedding dimension 7.14 0.53 8.02 1.05 2.21x10*

Table 2: Performance of the linear discriminant analysis (LDA) classifier for entropy measures
and embedding parameters extracted from the healthy and epileptic patient groups.

c - 5 < = s P
s § W 4 4w 4 [ u ¥ 5 § 33§ 33
E o a 2 E &S = E ¥ o T TSI
st o E 5 N & © 5 ¢ & 5 %¢ g2
£ O < 3 a Z n 8 z £ 4 ®» € E E

o 2] = w S w

Accuracy 86.11 100 81.67 9056 77.78 83.33 9889 100 100 98.89 9585 97.78
Specificity 8209 100 80.93 9201 7444 8631 9806 100 100 97.78 9691 9531
Sensitivity 90.35 100 82.93 8974 8251 9072 100 100 100 100 9479 100
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Table 3: Comparison of the performance of our work with previous studies on epilepsy
diagnosis using electroencephalography (EEG) signals.

. Accuracy Specificity Sensitivity
Author Feature Classifier EEG dataset
(%) (%) (%)
Subasi et
ol [ SD and average value LR, MLPNN L 90.3,914 89.2,92.8
Subasi et Statistical features with ICA, 99.50,
SVM University of Bonn [32 99, 98.5,100 100, 99, 100
al.[5] PCA, LDA y B2 9575 100
Subasi et AR parameter estimationand ~ Wavelet neural networks and
h - - . [6] 93 924 93.6
al. [6] maximum likelihood estimation back propagation
Ubeyli et o
a1 AR method SVM University of Bonn [32] 99.56 99.63 99.50
Frequency domain parameters, .
Faustetal. [g] o oroy comanp SVM University of Bonn [32] 933 98.33 96.67
Burg’s method
Donos et Time-domain and power band
Random forest EMU[42] e e 86.27
al. [9] features
Polat et al. Fourier transform-based
Decision tree University of Bonn [32] 98.72 99.31 99.40
[10] features
N 97.3,98.1, 99, 99, 99,
Acharya et al. HOS+Higuchi FD+Hurst DT, PNN, KNN, Fuzzy, GMM, o 94, 96, 96,
University of Bonn [32]  98.1, 100, 100, 100,
[11] EXPONENT+AppEn+SampEn SVM 100, 98, 98
99, 99 99.5
Shengkuh et ) N
al [12] Wavelet variances KNN University of Bonn [32] 100 e e
Orhan et al. . -
(13] Wavelet-based features K-means clustering and MLP  University of Bonn [32] 96.67 97.98 94.12
Mortaga et al. ) o
(14] Relative Wavelet Energy ANN University of Bonn [32] 95.2 92.12 98.17
Statistical features in the
i I.[1 R fi iversity of B 2 1
Jiaetal. [16] CEEMD domain andom forest University of Bonn [32] 98 99 00
Gandhi et al. DWT+(Spectral entropy, o
PNN University of Bonn [32] 100 e e
[15] Energy)
EMD-DWT method, ) ) -
Dasetal. [17] KNN (Cityblock distance) University of Bonn [32] 89.4 88.1 90.7
log-energy entropy
Multi wavelet transform+ -
Guoetal. [18] ) MLPNN University of Bonn [32] 98.2 95.50 99.00
ApproximateEn
Chandaka et ) o
al. 43] Cross-correlation SVM University of Bonn [32] 95.96 100 92
Least square-SVM (RBF
Gupta et al. Cross corrEn, log energy En, ) Bern Barcelona data-
P g energy kernel), KNN (Euclidean 94.41,9312 9557,9515  93.25,91.00
[20] SureEn i base [44]
distance)
SpectralEn, EmbeddingEn,
Kannathal et . -
al [19] Kalmogorov—SinaiEn, Ap- ANFIS University of Bonn [32] A
' proximateEn
Gruszczynska Medical University of
RQA measures SVM ) 868 0 e e
etal. [21] Bialystok [45]
Acharya et al. N
22 RQA measures GMM, KNN University of Bonn [32] ~ 92.6, 95.2 92.2,98.9 97.2,98.3
Wang et al. o
23] Wavelet packet entropy KNN University of Bonn [32] 9944 e e
VIII \ J Biomed Phys Eng
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Accuracy Specificity Sensitivity

Author Feature Classifier EEG dataset
(%) (%) (%)
Redilico et al. ) ) N
4] ReniEn, TallisEn LR University of Bonn [32] 95,945 94,94 97,97
Djemili et al. o
5] Lyapunov exponent RNN University of Bonn [32] 96.79 - e
Joshi et al. ) . - -
6] Fractional linear prediction SVM (RBF kernel) University of Bonn [32] 96 95 95.33
Veisi et al. [27] Permutation entropy LDA University of Bonn [32] 97 e
Epilepsy Telemetry
Polvchronaki Unit, Department of
etyal (6] Fractal dimension KNN Neurosurgery, Univer- === emeeeen 100
' sity of Athens, ‘Evange-
lismos’ Hospital
hua et al. Higher order statistics based
Chua eta raner order sialsfcs base GMM University of Bonn [32]  93.1 92 97.67
[47] features
Ach t al. D lutional |
oharya eta 6ep conVOILTONAINGUTaL ) iversity of Bonn [32] 8867 90 95
[48] network
LogEn, ThreshEn, SampEn, 100, 100, 100, 100, 100, 100,
Our study NormEn, SureEn, Embedding LDA University of Bonn [32] 100, 98.89, 100, 98.06, 100, 100,
delay 98.89,97.78  97.78, 95.31 100, 100

LR: Logistic Regression, MLPNN: Multilayer Perception Neural Networks, AR: Autoregressive, ANN: Artificial Neural Network,
k-NN: K-Nearest Neighbor, LS: Least Squares, SVM: Support Vector Machine, GLM: Generalized Linear Model, HOS: Higher
Order Spectra, PNN: Probabilistic Neural Network, ASE: Average Sample Entropy, AVIF: Average Variance Of Instantaneous
Frequencies, RQA: Recurrence Quantification Analysis, RNN: Recurrent Neural Networks, GMM: Gaussian Mixture Model

sensitivity, and specificity.

Figure 2 illustrates the LDA classifier’s per-
formance for SampEn, LogEn, ThreshEn, Su-
reEn, NormEn, and Embedding Delay across
a range of signal-to-noise ratios (SNRs), from
1 to 40 dB. These features maintained an accu-
racy of over 84% for SNRs greater than 20 dB.

Discussion

Our results showed that measures of Embed-
ding dimension, Embedding delay, PermEn,
FuzzyEn, SampEn, NormEn, SureEn, LogEn,
and ThreshEn effectively discriminate epilep-
tic patients from normal subjects. The signifi-
cant differentiation of EEG signals using these
features can be attributed to the following
factors:

Embedding Parameters

These parameters play a crucial role in phase
space reconstruction, where the embedding
dimension represents the minimum number
of uncorrelated orientations necessary to re-

construct the system dynamics. While higher
embedding dimensions can capture more in-
formation, excessive embedding introduces
redundancy.

Two methods, AMI and FNN, are used to
calculate the embedding delay and embed-
ding dimension. Compared to singular value
decomposition (SVD)-based approaches, the
AMI method is more effective in capturing
nonlinear interrelations, ensuring that the re-
constructed state space consists of uncorrelat-
ed orientations [49].

As shown in Equation (1), a greater number
of delayed time series contribute to the state-
space vector for epileptic EEG signals, result-
ing in higher embedding parameter values
in epileptic EEG compared to normal EEG,
reflecting the transition from randomness to
deterministic chaos during seizures [50] (see
Table 1).

Entropy Measures

Entropy, a measure of signal complexity, is
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Figure 2: Linear discriminant analysis (LDA) classifier performance across a range of signal-to-
noise ratios (SNRs), from 1 to 40 dB, using SampEn, LogEn, ThreshEn, SureEn, NormEn, and

Embedding delay for EEG signal classification.

generally lower in epileptic EEGs compared
to the healthy group due to the presence of
more rhythmic and periodic patterns during
seizures [50].

AppEn, SampEn, and FuzzyEn are par-
ticularly effective in characterizing nonlinear
signals. Since epileptic EEG signals exhibit
greater periodicity, they tend to have lower
entropy values compared to normal EEG sig-
nals [50]. While AppEn is prone to bias and
is highly sensitive to minor fluctuations [51],
SampEn and FuzzyEn offer greater precision
and robustness in capturing signal complexity
[52].

PermEn and other entropy measures, includ-
ing SpectralEn, NormEn, SureEn, LogEn, and
ThreshEn are effective in detecting variabil-
ity in nonstationary signals [53]. However,
ShanEn has notable limitations, such as the
potential overestimation of entropy and its in-
ability to capture temporal dependencies in
the signal. Given the increased predictability
of epileptic EEG signals, these signals typical-
ly exhibit lower entropy values compared to
normal EEGs [54].

Feature Dimensionality

In this study, all extracted features were

individually analyzed to assess their discrimi-
natory power. The dimensionality of the fea-
ture space poses a significant challenge for
classification algorithms. A higher-dimension-
al feature space increases model complexity,
leading to greater computational costs for both
training and testing. Additionally, an excessive
number of features can introduce redundancy,
which may degrade the estimation accuracy of
model parameters. If a single feature can pro-
vide reliable classification performance, the
need for multiple features is reduced, simpli-
fying the model and enhancing computational
efficiency.

Classification Performance

The LDA classifier demonstrated high clas-
sification accuracy when using individual fea-
tures, particularly SampEn, NormEn, SureEn,
LogEn, ThreshEn, and Embedding Delay.
This finding indicates that these features pos-
sess strong discriminatory power, enabling the
classification of EEG signals independently,
even with a simple linear classifier like LDA.

These features effectively distinguished
epileptic patients from healthy individuals,
achieving reliable classification accuracy.
Furthermore, our findings align with previous
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studies, which have also identified significant
alterations in these features among epileptic
patients.

Robustness to Noise

This study further highlighted the robust-
ness of the LDA classifier in distinguishing
healthy and epileptic EEG signals, even in the
presence of Gaussian noise. As illustrated in
Figure 2, classification accuracy improves
across the selected measures (SampEn, Nor-
mEn, SureEn, LogEn, ThreshEn, and Embed-
ding Delay) as the SNR increases.

Atlow SNRs (e.g., 1 to 10 dB), the accuracy
is generally lower, indicating that high noise
levels negatively impact the classifiers’ ability
to distinguish between healthy and epileptic
EEG signals. However, at SNR levels of 20
dB and above, significant improvements are
observed in accuracy. Notably, SampEn and
SureEn demonstrate strong performance at
higher SNRs, with SampEn reaching over 87%
accuracy at 20 dB, which further improves at
higher SNRs. Additionally, ThreshEn and Lo-
gEn demonstrate competitive classification
performance, making these measures particu-
larly suitable for EEG signal analysis in noisy
environments. These findings emphasize the
resilience of the selected entropy measures
in preserving classification accuracy under
varying noise conditions.

Conclusion

In this study, embedding parameters and en-
tropy measures from each wavelet sub-band
were individually fed into the LDA classi-
fier to classify EEG signals into two groups:
healthy individuals and epileptic patients.
By comparing the sensitivity, specificity, and
accuracy of the classifier, it yielded reliable
results, effectively discriminating the EEG
signals of epileptic patients from those of nor-
mal subjects. Additionally, the effect of ad-
ditive Gaussian noise on discrimination per-
formance was evaluated, demonstrating that
certain measures, such as SampEn, LogEn,
ThreshEn, SureEn, NormEn, and Embedding

delay, maintained high classification accuracy
even under varying noise conditions, thereby
confirming the robustness of these features in
noisy environments. Notably, if a single fea-
ture can guarantee reliable classification per-
formance, it avoids the challenges associated
with high-dimensional feature vectors, such as
increased model complexity, time consump-
tion, and redundancy. This analysis provides
a valuable framework for the quantification of
classification reliability and the identification
of abnormal EEG activity. Future research
could explore the generalizability of these
findings across different datasets and noise
models.
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