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ABSTRACT

Background: Driver fatigue detection is crucial for traffic safety. Electroencephalog-
raphy (EEG) signals, which directly reflect the human mental state, provide a reliable
approach for identifying fatigue.

Objective: This study aimed to investigate the effectiveness of EEG microstate
analysis in detecting driver fatigue by analyzing variations in microstate features be-
tween normal and fatigued states.

Material and Methods: This analytical study aimed to develop a supervised
machine learning approach for driver fatigue detection using EEG microstate features.
EEG data were collected from 10 individuals in both normal and fatigued states. Mi-
crostate analysis was performed to extract key features, including duration, occurrence,
coverage, and Microstate Mean Power (MMP), from four types of microstates labeled A,
B, C, and D. These features were then used as inputs to train and test a Support Vector
Machine (SVM) for classifying each EEG segment into either normal state or fatigue
state.

Results: The classification achieved high accuracy, particularly when combining
MMP and occurrence features. The highest accuracy recorded was 98.77%.

Conclusion: EEG microstate analysis, in combination with SVM, proves to be an
effective method for detecting driver fatigue. This approach can be utilized for real-time
driver monitoring and fatigue alert systems, enhancing road safety.
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Introduction

atigue is a significant mental and physical concern that affects a

driver’s ability to safely control a vehicle. Therefore, the develop-

ment of tools to detect early signs of fatigue and enable timely
intervention is in high demand and has become a critical safety issue.
To address this problem, researchers have utilized various physiological
and behavioral biomarkers to develop sophisticated, non-invasive sys-
tems for fatigue detection. These methods include tracking eye move-
ments, using Electrooculography (EOG), and measuring brain activity
through Electroencephalography (EEG). Among these, EEG is consid-
ered the most commonly used signal since it can directly measure brain
activity and assess fatigue status [1,2]. To design an effective driving
fatigue detection system using EEG signals, it is essential to extract
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informative features from these signals.

There have been several EEG studies relat-
ed to driving fatigue detection that have ap-
plied both classical machine learning and deep
learning approaches [3,4]. Classical methods
typically involve feature extraction followed
by classification using algorithms, such as
Support Vector Machines (SVM) [5,6]. Re-
cent research on driver fatigue detection has
utilized diverse methods to analyze EEG sig-
nals, including time-domain waveform feature
analysis, frequency-domain functional spec-
trum analysis, and time-frequency-domain
techniques, such as wavelet transform and
Fast Fourier Transform (FFT) [3]. Addition-
ally, nonlinear dynamics feature extraction
methods, including wavelet entropy, permu-
tation entropy, sample entropy, and fuzzy
entropy, have also been utilized [4,7]. More-
over, network features derived from brain
functional connectivity graphs based on EEG
signals have been employed for driver fatigue
detection [6].

The EEG microstates are brief, quasi-stable
patterns of scalp electrical activity ranging
from 80 to 120 milliseconds before transition-
ing to another state. They are related to large-
scale neural networks and can quasi-syn-
chronously reflect their activities [8,9]. EEG
microstates are instantaneous representations
of the global functional state of the brain and
can reflect changes in global brain network ac-
tivation. They are typically visualized through
brain topography. While the number of micro-
states can vary between studies, four micro-
states are most commonly identified and used
in EEG microstate analysis, which are labeled
as A, B, C, and D [8].

Recent studies using EEG microstate anal-
ysis have revealed changes in brain activity,
which can be used for detecting fatigue [10-
11]. Baldini et al. [10] investigated fatigue in
Multiple Sclerosis (MS) patients and found
that activity in microstate F (associated with
the salience network) decreased, while mi-
crostate B (linked to the visual network) in-

creased in the fatigued subjects in broadband
and beta bands. Li et al. [11] examined how
mental fatigue affects EEG microstate pat-
terns of aircraft pilots. Across four identified
microstates, they found that fatigue increased
the global explained variance and time param-
eters of microstate C, while decreasing the oc-
currence and coverage of microstate D. Fur-
thermore, they found that transitions between
different microstates happened with different
probability, highlighting the effectiveness of
EEG microstates in detecting mental fatigue.

Although different studies have revealed
microstate changes in different diseases and
mental states [12-15], few have focused on the
potential of microstate-based features for de-
tecting driver fatigue. In this study, we applied
microstate analysis to extract relevant features
from broadband-decomposed EEG signals to
classify them into fatigue state or normal state.
Key features, including average duration, oc-
currence per second, total time coverage, and
Microstate Mean Power (MMP), were extract-
ed from EEG signals of healthy subjects in
both fatigue and normal states. These features
were then used to train an SVM classifier for
signal classification.

Material and Methods

The entire process of this analytical study,
as illustrated in Figure 1, involved prepro-
cessing EEG signals to remove artifacts and
segmenting the continuous data into overlap-
ping epochs. Each EEG segment subsequently
underwent microstate analysis to identify dis-
tinct microstates. From these, temporal pa-
rameters including duration, occurrence, time
coverage, and microstate mean power were
extracted. Finally, the extracted features were
used to train an SVM classifier to classify the
segments into normal or fatigued states.

EEG Data recording and preprocess-
ing

In this study, we used the EEG data recorded
from 12 subjects aged between 19-24 years
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Figure 1: Block diagram of the proposed Electroencephalography (EEG) based fatigue detection
method. The process includes preprocessing, EEG microstate analysis, feature extraction, and
classification using an SVM classifier. (SVM: Support Vector Machine)

recruited from Jiangxi University of Technol-
ogy [7], which is a publicly accessible EEG
dataset, for method development and evalua-
tion. The EEG recording was performed with
a static driving simulator in a controlled lab
environment in two phases. The EEG signals
from the last 5 minutes of the first 20 minutes
of driving were recorded and identified as the
normal state. Participants then drove continu-
ously for 40 to 100 minutes. Once the self-re-
ported fatigue questionnaire indicated that the
subject was in a driving fatigue state, the EEG
recording was stopped. The last 5 minutes of
recorded EEG signals were labeled as fatigue.
EEG signals were collected using a 32-chan-
nel electrode cap, which comprised 30 active
channels and 2 reference channels, based on
the international 10-20 system. Data from
all channels were referenced to two electri-
cally connected mastoid electrodes at A1 and
A2 and digitized at 1000 Hz. Eye movements
and blinks were monitored by recording the
horizontal and vertical EOG signals. Data pre-
processing was conducted using Neuroscan’s
Scan 4.3 software. To reduce noise, the raw

signals were filtered with a 50 Hz notch filter
and a band-pass filter ranging from 0.15 Hz
to 45 Hz [7]. Independent Component Analy-
sis (ICA) was applied to decompose the EEG
signals, allowing for the identification and re-
moval of noise components associated with
artifacts. The signal quality was then assessed
visually, leading to the exclusion of two sub-
jects due to the remaining artifacts in their
signals. Consequently, we used the EEG data
recorded from 10 subjects.

Finally, we segmented the continuous EEG
signals into 5-second overlapping epochs with
a 3-second overlap. From the EEG dataset for
each subject, 295 segments in the normal state
and 295 segments in the fatigue state were ex-
tracted. All segments (2,950 segments in the
fatigue state and 2,950 segments in the normal
state) were used for feature extraction using
microstate analysis and classification to de-
termine whether each segment belonged to a
subject in a normal or fatigued state.

EEG microstate analysis
The Microstate EEGlab toolbox [16] was
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used to segment the entire EEG into a discrete
set of a limited number of prototypical topog-
raphies that remained quasi-stable for a short
period of time (around 80-120 ms) before
rapidly transitioning to a different topography.
These short periods have been called micro-
states. The time domain microstate analysis is
performed mainly in two stages: 1) a segmen-
tation process of EEG data to find the most
representative template maps, and ii) the back-
fitting process to fit these classes back to the
EEG data [16]. In the first stage of microstate
analysis, the Global Field Power (GFP) was
computed (Equation 1) for each time point t
of the entire EEG segment. GFP served as an
indicator of the potential variance across all
electrodes at each time point.

GFP(t \/Z(V e ()N, (1)

Where V(#)and V' (7) are the instantaneous
and mean EEG signal across N, electrodes at
time ¢. We utilized all 30 EEG electrodes in
microstate analysis to derive the GFP for each
time point, which results in an oscillatory time
series for GFP. Since scalp topographies re-
main stable around GFP peaks with the high-
est signal-to-noise ratio, these time points us-
ing data from all EEG electrodes were used
for the clustering algorithm.

Then, topographic maps corresponding to
the GFP peaks were extracted at specific time
points and underwent Topographic Atomize
& Agglomerate Hierarchical Clustering (T-
AAH) analysis [16]. Compared to k-means
clustering, T-AAHC offers more consistent
identification of microstate classes [13]. The
polarity of the microstate topography was ig-
nored. Based on previous studies showing that
four topographies are sufficient to represent
whole-brain activity, the number of clusters
was set to four (c=4) [8]. The Global Explain
Variance (GEV) and the Cross-Validation
(CV) criterion were used to determine the sub-
ject representative microstate topographies.
These procedures were applied to the EEG of

each subject. This process was applied sepa-
rately to the EEG recordings from both normal
and fatigue conditions, resulting in four dis-
tinct microstate classes (A, B, C, and D) per
condition. These classes represent the most
common topographic patterns in the EEG data
for each state.

In the second stage, the back-fitting process
was performed by assigning microstate labels
to EEG samples based on their highest topo-
graphic similarity to the corresponding micro-
state prototypes. This similarity is measured
using Global Map Dissimilarity (GMD). The
GMD is a distance measure that is invariant to
the strength of the signal and only considers
how similar the topographical maps appear.
This procedure enabled a detailed analysis of
the EEG signals within the time series cor-
responding to the four identified microstates,
facilitating a comprehensive understanding
of the temporal dynamics and characteristics
of the EEG data across different microstates.
Back-fitting according to individual topo-
graphic maps provides an optimal fit between
the EEG data and the maps.

Back-fitting and quantifying according to
individual template maps have the advantage
of providing an optimal fit between the cho-
sen template and their respective EEG data.
However, using a separate template for each
subject increases feature variance and reduces
the comparability of extracted individual mi-
crostate characteristics [16]. To address this,
we selected a subject in the normal state as a
reference and utilized their template maps for
back-fitting all subjects. Following the back-
fitting, we extracted appropriate features to
classify the EEG segments into normal and
fatigue states.

Feature extraction

Microstate sequences reflect the potential
neural dynamics of brain activity as a sym-
bolic time series and serve as the basis for
extracting microstate characteristics. In this
study, four types of features were extracted to

518 \

J Biomed Phys Eng 2025; 15(6)



EEG Microstates for Fatigue Detection

classify each EEG segment as either a normal
or fatigued state. The occurrence represents
the mean number of times per second that a
specific microstate remains dominant, reflect-
ing the likelihood of the underlying neural
activation being represented. The coverage
refers to the percentage of the EEG segment’s
total analysis time during which a specific mi-
crostate remains dominant. The duration is de-
fined as the average time that a specific micro-
state remains dominant, providing insight into
the stability of the underlying neural configu-
ration during either the normal or fatigue state
[17]. Finally, the MMP quantifies the average
signal power recorded at each electrode during
a given microstate (A, B, C, or D), reflecting
the corresponding brain activity. For an EEG
signal V(f) from the i" electrode (i=1, ..., N,
electrodes), the mean power during a specific
microstate is defined as:
’ 2
MMP =3 (¥ (1)) @
n=1

where V(n), represents the EEG signal ampli-
tude at time sample n for the i* electrode, and
T'is the total number of time points within that
specific microstate. This calculation yields 30
MMP features per microstate, resulting in a to-
tal of 120 features across all four microstates.

Feature extraction through microstate analy-
sis generates 132 features for all microstates
A, B, C, and D. To minimize variability that
could affect classifier performance, Z-score
normalization was applied [18]. This nor-
malization step ensured that all features were
scaled to a common range, thereby mitigating
the impact of outliers and reducing the influ-
ence of individual differences.

Classification

SVM is a supervised machine learning meth-
od that aims to simultaneously minimize clas-
sification errors and maximize the geometric
margin between classes. This is achieved by
iteratively constructing an optimal separating
hyperplane that distinguishes samples from
two different classes. In this study, we used

an SVM with a radial basis function (RBF)
kernel, selected for its higher classification
efficiency compared to other kernel types, to
classify entire EEG segments as either normal
or fatigued based on the extracted microstate
features.

A stratified 10-fold cross-validation was ap-
plied to the EEG segments of each subject,
with data from 10 subjects used for training
and testing; specifically, 9 folds were com-
bined for training, while the remaining fold
from all subjects served as the test set. This
process was repeated to k=10 times, with each
fold serving as the test set exactly once, en-
suring that all data points were used for both
training and testing across the iterations.

Results

EEG microstates analysis

Figure 2 shows EEG microstate topograph-
ic maps of a selected subject in two distinct
states: normal (top row) and fatigue (bottom
row). Each map represents the spatial distri-
bution of brain activity as reflected by char-
acteristic microstate A, B, C, and D. The to-
pography maps show differences between the
two states. Figure 3 shows the temporal pa-
rameters (Duration, Occurrence, and Cover-
age) of the four microstates A, B, C, and D in
normal and fatigue states obtained from mi-
crostate analysis. For microstates A, C, and D,
Coverage increased during the fatigue state,
while Duration and Occurrence showed slight
decreases. In microstate B during the fatigue
state, Coverage decreased along with Duration
and Occurrence. Across all four microstates,
Occurrence generally decreased in the fatigue
state compared to the normal state.

Classification performances

Table 1 shows the mean classification ac-
curacy obtained by tenfold -cross-valida-
tion for three temporal microstate features
and MMP across four microstates (A, B, C,
and D) and their combined features of four
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Figure 2: Topographies of the four microstates A, B, C, and D in the normal state (top) and the
fatigue state (bottom).
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Figure 3: Comparison of Electroencephalography (EEG) Microstate Temporal Parameters in Nor-
mal and Fatigue States. Boxplots represent the Duration (millisecond), Occurrence (Hz), and
Coverage (%) of microstates A, B, C, and D across 10 subjects, obtained from EEG microstate

analysis. Blue boxplots correspond to subjects in the normal state, while red boxplots represent
subjects in the fatigue state.

Table 1: Mean classification accuracy (zstd) for classification of subjects in the normal state and

fatigue state using microstate features: Duration, Occurrence, Coverage and Microstate Mean
Power (MMP).

Microstate A Microstate B Microstate C Microstate D Microstate A,B,C,D

Duration 55.25+3.92 60.50+2.94 61.73+4.16 61.78+3.90 72.77+4.02
Occurrence  54.65+4.03 66.63+4.33 70.40£3.63 60.19+3.92 76.68+3.32
Coverage 55.84+2.94 53.76+2.59 56.04+3.60 51.38+4.04 63.16+3.34
MMP 90.20+2.47 87.96+2.80 88.21+2.80 83.762+3.18 97.82+1.04

MMP: Microstate Mean Power

520 \ J Biomed Phys Eng 2025; 15(6)



EEG Microstates for Fatigue Detection

microstates using SVM. For individual micro-
states, Duration shows similar accuracy for mi-
crostates B, C, and D (60.50+2.94, 61.73+4.16,
61.7843.90), slightly outperforming micro-
state A (55.25+3.92). Occurrence performs
best for Microstate C (70.40+3.63), suggesting
its superior role in differentiating states, while
microstate A performs the least effectively for
this feature. Coverage shows relatively similar
accuracy across microstates, with microstate C
(56.04+3.60) performing slightly better. How-
ever, the overall performance of this feature is
less impactful compared to Duration and Oc-
currence. Microstate mean power proved to
be the most effective feature compared to Oc-
currence, Duration and Coverage, consistently
yielding higher classification accuracy across
all microstates, with microstate A achieving
the highest performance (90.20+2.47). These
results underscore the varying contributions
of individual features and microstates to the
classification task.

Combining features from all microstates
(A, B, C, and D) for the classification of
the subjects into normal and fatigue states
significantly enhances mean accuracy. For
Duration, the combined accuracy has been
improved to 72.77+4.02, and for Occur-
rence, it reached the highest accuracy of
76.68+3.32. Coverage, with less impact in-
dividually, showed a moderate improvement
in accuracy when combined across all micro-
states (63.16+3.34). Microstate mean power

achieves best accuracy when combining mi-
crostates, reaching 97.82+1.04. These results
suggest that integrating microstate features le-
verages complementary information, improv-
ing classification performance and reducing
variability.

Mean Classification Accuracy Using
Combined Microstate Features

To identify the most effective feature set for
achieving accurate classification, we analyzed
the performance of different feature combina-
tions. Table 2 presents the mean classification
accuracy for differentiating between the nor-
mal and fatigue states using various combina-
tions of microstate features.

The results show that by incorporating dif-
ferent features, the classification accuracy in-
creased. The combination of temporal features
consisting of Occurrence, Duration, and Cov-
erage increases the accuracy to 80.50+4.14,
highlighting the moderate classification po-
tential of these temporal features. Incorporat-
ing mean instantaneous energy substantially
improves performance, achieving a high ac-
curacy of 97.82+1.04. Adding Occurrence to
microstate mean power further enhances accu-
racy to 98.77+0.58. However, adding Duration
and then Coverage leads to a small decrease in
accuracy (98.74+0.45 and 98.56+0.84, respec-
tively), indicating that combining too many
features results in diminishing improvements.

These results show the critical role of

Table 2: Mean classification accuracy (+std) for classification of subjects in the normal state and
fatigue state using combined features of Duration, Occurrence, Coverage and Microstate Mean

Power (MMP).

Microstate A, B, C, D Number of Features Accuracy
Occurrence + Duration + Coverage 12 80.50+4.14
MMP 120 97.82+1.04

MMP + Occurrence 124 98.77+0.58

MMP + Occurrence + Duration 128 98.74+0.45

MMP + Occurrence + Duration + Coverage 132 98.56+0.84

MMP: Microstate Mean Power

J Biomed Phys Eng 2025; 15(6)
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microstate mean power as the most influential
feature for classification. While adding Oc-
currence further improved performance, addi-
tional features, such as Duration and Coverage
did not significantly contribute to accuracy.
This analysis underscores the importance of
feature selection in optimizing classification
models, with the combination of microstate
mean power and Occurrence emerging as the
most effective feature set.

Discussion

In this study, we introduced a novel frame-
work that utilizes microstate analysis to clas-
sify EEG data into normal and fatigue states,
using SVM as the classifier. We evaluated the
impact of different features extracted using
EEG microstate analysis. Our results showed
that classification accuracy, particularly with
the inclusion of microstate mean power and
Occurrence, significantly improved the accu-
racy of the classifier.

In the context of driver fatigue detection,
EEG signals have been predominantly ap-
plied. EEG offers a direct measure of brain
activity that can indicate changes in alertness
and cognitive state. Recently, different driver
fatigue detection approaches have been pro-
posed. The developed methods were tested on
collected datasets, including both public and
private sources, with various validation strat-
egies, such as k-fold cross-validation, leave-
one-out cross-validation, and fixed splits. The
studies utilized different numbers of EEG
channels, suggesting a trade-off between sys-
tem complexity and data richness. The clas-
sification accuracies ranged from 90.70% to
98.86%.

Min et al. [7] utilized multiple entropy-based
features (spectrogram entropy, approximate
entropy, sample entropy, and fuzzy entropy)
as inputs to an SVM, achieving an accuracy
of 98.75% on a 12-subject EEG dataset. Gao
et al. [19] proposed the Relative Wavelet En-
tropy Complex Network (RWECN), which
combines wavelet entropy and network-based

features for classifying alert and fatigue states
using Fisher Linear Discriminant Analysis
(FLDA). Using EEG data from 30 effective
channels, they achieved an accuracy of 95.5%
on eight subjects with a 10-fold cross-vali-
dation strategy. Chen et al. [20] decomposed
EEG signals into frequency bands using Wave-
let Packet Transform (WPT). They analyzed
functional connectivity differences between
alert and fatigue states, identifying reduced
frontal-to-parietal connectivity, lower cluster-
ing coefficients, and higher characteristic path
lengths during fatigue, particularly in the alpha
and beta bands. These network features were
used to train SVM classifier, achieving 94.4%
accuracy with 14-channel EEG data and 10-
fold cross-validation on EEG segments from
14 subjects. Luo et al. [21] employed an adap-
tive multi-scale entropy method to extract fea-
tures, including Adaptive Multi-scale Sample
Entropy (AMSE), Fuzzy Entropy (AMFE),
and Permutation Entropy (AMPE), from EEG
data recorded at forehead electrodes (Fpl and
Fp2) for driver fatigue detection. Using SVM
as the classifier, they achieved a 95.37% ac-
curacy with AMFE, splitting the EEG signals
into 80% training and 20% testing data from
16 subjects, with each signal segmented into
I-second intervals. Ren et al. [22] developed
a Two-Level Learning Hierarchy (TLLH) us-
ing Radial Basis Function (RBF) networks,
achieving a mean accuracy of 92.71% and
an Area Under the Curve (AUC) of 0.9199.
Gao et al. [23] applied the Short Time Fourier
Transform (STFT) to obtain log-Mel spectro-
grams from EEG signals, which served as in-
puts to a Convolutional Recurrent Neural Net-
work (CRNN) model. This approach achieved
a maximum accuracy of 88.39% using EEG
signals from 21 channels and 21 subjects.
These studies highlight the growing emphasis
on leveraging deep learning techniques for fa-
tigue detection.

Although the developed method applied a
range of features based on brain wave activ-
ity extracted from EEG signals, few studies
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have utilized EEG microstate analysis for the
analysis of brain fatigue and the classification
of driver fatigue detection. Our findings, based
on EEG microstate analysis of 10 subjects,
highlight the potential of EEG microstate anal-
ysis for driver fatigue detection. The results of
our study, which extracted microstate feature
sets and input them into the SVM classifier
to classify the subjects into normal state and
fatigue state, demonstrated high classification
accuracy, particularly with the inclusion of
microstate mean power and Occurrence. Spe-
cifically, the combination of microstate mean
power and Occurrence achieved the highest
accuracy (98.77+0.58).

Conclusion

In this study, we explored the possibility of
applying EEG microstate analysis for driver
fatigue detection. Based on microstate analy-
sis, we extracted microstate features to clas-
sify normal and fatigue states using an SVM
classifier. We found that features extracted
from microstates, particularly microstate
mean power and occurrence, can effectively
classify EEG signals. Although this conclu-
sion underscores the importance of micro-
state analysis for driver fatigue detection, we
expect that this discovery can be verified by
large-sample and multi-center experiments in
the future. Furthermore, while traditional ap-
proaches like SVMs remain effective for spe-
cific feature sets, deep learning models such
as convolutional neural networks have opened
new possibilities for processing EEG data and
could enhance predictive performance. We ex-
pected to apply different classifiers, especially
deep learning models.
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