Document Type : Original Research

Authors

1 Medical Physics Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA

Abstract

Objective: The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy.Methods: A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-components) and soft tissue (4-component). The tissue-equivalent materials were water, A-150 tissue-equivalent plastic and perspex. Electron dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for 8, 12, and 14 MeV electron energies.Results: The results of relative electron dose in various materials relative to dose in 9-component soft tissue were reported for 8, 12 and 14 MeV electron beams as tabulated data. While differences were observed between dose distributions in various soft tissues and tissue-equivalent materials, which vary with the composition of material, electron energy and depth in phantom, they can be ignored due to the incorporated uncertainties in Monte Carlo calculations. Conclusion: Based on the calculations performed, differences in dose distributions in various soft tissues and tissue-equivalent materials are not significant. However, due to the difference in composition of various materials, further research in this field with lower uncertainties is recommended. 

Keywords