Document Type : Original Research

Authors

1 Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Radiology, Faculty of Allied Medical School, Zanjan University of Medical Sciences, Zanjan, Iran

Abstract

Background: After radiation therapy (RT), some health hazards including DNA damages may occur where melatonin can play a protective role due to free radical generation. On the other hand, serious accidental overexposures may occur during RT due to nuclear accidents which necessitate the need for study on exposure to high-dose radiations during treatments.Objective: The aim of this study was to study the expression level of two genes in non-homologous end joining (NHEJ) pathways named Xrcc4 and Xrcc6 (Ku70) in order to examine the effect of melatonin on repair of DNA double-strand breaks (BSBs) caused by 8Gy ionizing radiation.Methods: One hundred eight male Wistar rats were irradiated with a whole body gamma radiation dose of 8Gy with or without melatonin pretreatments. They were divided into six different groups of control, 100 mg/kg melatonin alone, 8Gy irradiation alone, vehicle alone, vehicle plus 8Gy irradiation and 100 mg/kg melatonin plus 8Gy irradiation. Peripheral blood samples were collected at 8, 24 and 48 h after irradiation. Ku70 and Xrcc4 gene expression were evaluated by real-time quantitative polymerase chain reaction (qPCR) technique and analyzed by one-way ANOVA test.Results: Expression of Ku70 and Xrcc4 genes normalized against Hprt gene showed significant difference in melatonin plus irradiation group at 8h compared to the control group (p<0.05). At 24h post irradiation, gene expression changes were significantly upregulated in irradiation-alone group as well as melatonin plus irradiation group (p<0.05). No significant change was found in any groups compared to control group at 48 h time point.Conclusion: We concluded that, by increasing expression level of Ku70 and Xrcc4 genes, 100 mg/kg melatonin administration 8 and 24 h before 8 Gyionizing radiation can significantly affect the repair of DNA DSBs in NHEJ pathway.

Keywords

  1. Zhang LY, Chen LS, Sun R, Ji SJ, Ding YY, Wu J, et al. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment. J Radiat Res. 2013;54(2):235-42. doi.org/10.1093/jrr/rrs095. PubMed PMID: 23135157. PubMed PMCID: 3589933.
  2. Phillips ER, McKinnon PJ. DNA double-strand break repair and development. Oncogene. 2007;26(56):7799-808. doi.org/10.1038/sj.onc.1210877. PubMed PMID: 18066093.
  3. Katyal S, McKinnon PJ. DNA strand breaks, neurodegeneration and aging in the brain. Mech Ageing Dev. 2008;129(7-8):483-91. doi.org/10.1016/j.mad.2008.03.008. PubMed PMID: 18455751. PubMed PMCID: 3831510.
  4. Frappart PO, McKinnon PJ. Mouse models of DNA double-strand break repair and neurological disease. DNA Repair (Amst). 2008;7(7):1051-60. doi.org/10.1016/j.dnarep.2008.03.007. PubMed PMID: 18458002. PubMed PMCID: 3831504.
  5. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497-510. doi.org/10.1016/j.molcel.2012.07.029. PubMed PMID: 22920291.
  6. Brandsma I, Gent DC. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr. 2012;3(1):9. doi.org/10.1186/2041-9414-3-9. PubMed PMID: 23181949. PubMed PMCID: 3557175.
  7. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179-204. doi.org/10.1016/j.molcel.2010.09.019. PubMed PMID: 20965415. PubMed PMCID: 2988877.
  8. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181-211. doi.org/10.1146/annurev.biochem.052308.093131. PubMed PMID: 20192759. PubMed PMCID: 3079308.
  9. Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 2008;7(10):1765-71. doi.org/10.1016/j.dnarep.2008.06.018. PubMed PMID: 18675941. PubMed PMCID: 2695993.
  10. Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, et al. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell. 2004;14(5):611-23. doi.org/10.1016/j.molcel.2004.05.008. PubMed PMID: 15175156.
  11. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283(1):1-5. doi.org/10.1074/jbc.R700039200. PubMed PMID: 17999957.
  12. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A. 2002;99(12):8173-8. doi.org/10.1073/pnas.122228699. PubMed PMID: 12034884. PubMed PMCID: 123040.
  13. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18(1):134-47. doi.org/10.1038/cr.2007.111. PubMed PMID: 18157161.
  14. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006;124(2):301-13. doi.org/10.1016/j.cell.2005.12.031. PubMed PMID: 16439205.
  15. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229-57. doi.org/10.1146/annurev.biochem.77.061306.125255.
  16. Schulte-Uentrop L, El-Awady RA, Schliecker L, Willers H, Dahm-Daphi J. Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks. Nucleic Acids Res. 2008;36(8):2561-9. doi.org/10.1093/nar/gkn094. PubMed PMID: 18332040. PubMed PMCID: 2377445.
  17. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991;12(2):151-80. doi.org/10.1210/edrv-12-2-151. PubMed PMID: 1649044.
  18. Undeger U, Giray B, Zorlu AF, Oge K, Bacaran N. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp Toxicol Pathol. 2004;55(5):379-84. doi.org/10.1078/0940-2993-00332. PubMed PMID: 15088639.
  19. Shirazi A, Mihandoost E, Mohseni M, Ghazi-Khansari M, Rabie Mahdavi S. Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood. Phys Med. 2013;29(1):65-74. doi.org/10.1016/j.ejmp.2011.11.007. PubMed PMID: 22177584.
  20. Shirazi A, Haddadi GH, Asadi-Amoli F, Sakhaee S, Ghazi-Khansari M, Avand A. Radioprotective effect of melatonin in reducing oxidative stress in rat lenses. Cell J. 2011;13(2):79-82. doi.org/10.1016/s0167-8140(11)71751-0. PubMed PMID: 23508093. PubMed PMCID: 3584458.
  21. Koc M, Taysi S, Buyukokuroglu ME, Bakan N. Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res. 2003;44(3):211-5. doi.org/10.1269/jrr.44.211. PubMed PMID: 14646223.
  22. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1-9. doi.org/10.1046/j.1600-079X.2003.00092.x. PubMed PMID: 14675124.
  23. Vijayalaxmi, Reiter RJ, Tan DX, Herman TS, Thomas CR, Jr. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys. 2004;59(3):639-53. doi.org/10.1016/j.ijrobp.2004.02.006. PubMed PMID: 15183467.
  24. Parihar VK, Dhawan J, Kumar S, Manjula SN, Subramanian G, Unnikrishnan MK, et al. Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chem Biol Interact. 2007;170(1):49-58. doi.org/10.1016/j.cbi.2007.07.006. PubMed PMID: 17765885.
  25. Sato T, Kinoshita M, Yamamoto T, Ito M, Nishida T, Takeuchi M, et al. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 2015;10(2):e0117020. doi.org/10.1371/journal.pone.0117020. PubMed PMID: 25651298. PubMed PMCID: 4317183.
  26. Cassatt DR, Fazenbaker CA, Bachy CM, Hanson MS. Preclinical modeling of improved amifostine (Ethyol) use in radiation therapy. Semin Radiat Oncol. 2002;12:97-102. doi.org/10.1053/srao.2002.31382. PubMed PMID: 11917293.
  27. Prasad KN. Handbook of radiobiology. New York: CRC press; 1995. 352p.
  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8. doi.org/10.1006/meth.2001.1262.
  29. Shirazi A, Haddadi G, Minaee B, Sepehrizadeh Z, Mahdavi S, Jaberi E, et al. Evaluation of melatonin for modulation of apoptosis-related genes in irradiated cervical spinal cord. International J Low Radiation. 2010;7(6):436-45. doi.org/10.1504/IJLR.2010.037665.
  30. Mohseni M, Mihandoost E, Shirazi A, Sepehrizadeh Z, Bazzaz JT, Ghazi-khansari M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res. 2012;738-739:19-27. doi.org/10.1016/j.mrfmmm.2012.08.006. PubMed PMID: 22982225.
  31. Rezaeejam H, Shirazi A, Valizadeh M, Izadi P. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction. J Cancer Res Ther. 2015;11(3):549-57. doi.org/10.4103/0973-1482.160912. PubMed PMID: 26458580.
  32. Karbownik M, Reiter RJ, Qi W, Garcia JJ, Tan DX, Manchester LC, et al. Protective effects of melatonin against oxidation of guanine bases in DNA and decreased microsomal membrane fluidity in rat liver induced by whole body ionizing radiation. Mol Cell Biochem. 2000;211:137-44. doi.org/10.1023/A:1007148530845. PubMed PMID: 11055556.
  33. Yurtcu E, Guney Y, Ergun MA, Guney HZ, Uluoglu C, Hicsonmez A, et al. Lack of a time-dependent effect of melatonin on radiation-induced apoptosis in cultured rat lymphocytes. Cell Biol Int. 2007;31(10):1144-9. doi.org/10.1016/j.cellbi.2007.03.030. PubMed PMID: 17482482.
  34. Kim JK, Lee CJ. Effect of exogenous melatonin on the ovarian follicles in gamma-irradiated mouse. Mutat Res. 2000;449(1-2):33-9. doi.org/10.1016/S0027-5107(00)00027-0. PubMed PMID: 10751632.
  35. El-Missiry MA, Fayed TA, El-Sawy MR, El-Sayed AA. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf. 2007;66(2):278-86. doi.org/10.1016/j.ecoenv.2006.03.008. PubMed PMID: 16793135.