Document Type : Original Research

Authors

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a better and more qualified extracted fetal ECG by using a novel approach.Materials and Methods: In this paper, a PCA/ICA-based algorithm is proposed for extracting fetal ECG, and fetal R-peaks are detected as well. The method validates the quality of extracted ECGs and selects the best candidate fetal ECG to provide the required morphological ECG features such as fetal heart rate and RR interval for more clinical examinations. The method was evaluated using the dataset which was provided by PhysioNet/Computing in Cardiology Challenge 2013. The dataset consists of 75 recordings of 4-channel ECGs each containing 1-minute length for training and 100 similar recordings for testing.Results: When the proposed algorithm was applied to the test set, the scores of 85.853 bpm2 for fetal heart rate and an error of 9.725 ms RMS for fetal RR-interval estimation were obtained.Conclusion: The results obtained with the mentioned algorithm shows the robustness of the research, and it is suggested to be used in practical fetal ECG monitoring systems.

Keywords

  1. Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:401323. doi.org/10.1155/2010/401323. PubMed PMID: 20981293. PubMed PMCID: 2963133.
  2. Sameni R. Extraction of fetal cardiac signals from an array of maternal abdominal recordings: Citeseer; 2008.
  3. In: PhysioNet. Noninvasive Fetal ECG: the PhysioNet/Computing in Cardiology Challenge 2013. Available from: http://physionet.org/challenge/2013/.
  4. Martens SM, Rabotti C, Mischi M, Sluijter RJ. A robust fetal ECG detection method for abdominal recordings. Physiol Meas. 2007;28:373-88. doi.org/10.1088/0967-3334/28/4/004. PubMed PMID: 17395993.
  5. Anisha M, Kumar S, Benisha M, editors. Survey on Fetal ECG extraction. Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014 International Conference on; 2014: IEEE.
  6. Di Marco LY, Marzo A, Frangi A, editors. Multichannel foetal heartbeat detection by combining source cancellation with expectation-weighted estimation of fiducial points. Computing in Cardiology 2013; 2013: IEEE.
  7. Sameni R, Clifford GD. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. Open Pacing Electrophysiol Ther J. 2010;3:4-20. doi.org/10.2174/1876536x01003010004. PubMed PMID: 21614148. PubMed PMCID: 3100207.
  8. Clifford GD, Silva I, Behar J, Moody GB. Non-invasive fetal ECG analysis. Physiol Meas. 2014;35:1521-36. doi.org/10.1088/0967-3334/35/8/1521. PubMed PMID: 25071093. PubMed PMCID: 4164169.
  9. Podziemski P, Gieraltowski J, editors. Fetal heart rate discovery: algorithm for detection of fetal heart rate from noisy, noninvasive fetal ECG recordings. Computing in Cardiology 2013; 2013: IEEE.
  10. Dessì A, Pani D, Raffo L, editors. Identification of fetal QRS complexes in low density non-invasive biopotential recordings. Computing in Cardiology 2013; 2013: IEEE.
  11. Christov I, Simova I, Abächerli R, editors. Cancellation of the maternal and extraction of the fetal ECG in noninvasive recordings. Computing in Cardiology 2013; 2013: IEEE.
  12. Varanini M, Tartarisco G, Billeci L, Macerata A, Pioggia G, Balocchi R, editors. A multi-step approach for non-invasive fetal ECG analysis. Computing in Cardiology 2013; 2013: IEEE.
  13. Behar J, Oster J, Clifford GD. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data. Physiol Meas. 2014;35:1569-89. doi.org/10.1088/0967-3334/35/8/1569. PubMed PMID: 25069410.
  14. Lipponen JA, Tarvainen MP. Principal component model for maternal ECG extraction in fetal QRS detection. Physiol Meas. 2014;35:1637-48. doi.org/10.1088/0967-3334/35/8/1637. PubMed PMID: 25069651.
  15. Silva I, Behar J, Sameni R, Zhu T, Oster J, Clifford GD, et al., editors. Noninvasive fetal ECG: the PhysioNet/computing in cardiology challenge 2013. Computing in Cardiology 2013; 2013: IEEE.
  16. Gupta R, Mittal N. Noise Reduction: A Comparative Study of Different Filters. International Journal of Current Engineering and Technology 2014;4:1686-89.
  17. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE transactions on biomedical engineering. 1985;(3):230-6. doi.org/10.1109/TBME.1985.325532. PubMed PMID: 3997178.
  18. Campbell J, Eswaran H, Wilson J, Murphy P, Lowery C, Preissl H. Fetal magnetocardiographic source separation: independent component analysis techniques and signal-space projection. Int J Bioelectromagn. 2005;7:329-33.
  19. Kuzilek J. Independent component analysis: Applications in ecg signal processing: Czech Technical University in Prague; 2013.
  20. Taigang H, Clifford G, Tarassanko L. Application of ica in removing artefacts from the ECG. Neural Processing Letters. 2004;10:1-5.
  21. Comani S, Mantini D, Alleva G, Di Luzio S, Romani GL. Fetal magnetocardiographic mapping using independent component analysis. Physiol Meas. 2004;25:1459-72. doi.org/10.1088/0967-3334/25/6/011. PubMed PMID: 15712724.
  22. Yoon H, Kim H, Kwon S, Park K. An Automated Motion Artifact Removal in Electrocardiogram Based on Independent Component Analysis. In: The Fifth International Conference on Health, Telemedicine and Social Medicine. 2013:15-20.
  23. Cardoso J-F, Souloumiac A, editors. Blind beamforming for non-Gaussian signals. IEE Proceedings F-Radar and Signal Processing; 1993: IET.
  24. Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13:411-30. doi.org/10.1016/S0893-6080(00)00026-5. PubMed PMID: 10946390.
  25. Behar J, Oster J, Clifford GD, editors. Non-invasive FECG extraction from a set of abdominal sensors. Computing in Cardiology 2013; 2013: IEEE
  26. Tanskanen JM, Viik JJ. Independent Component Analysis in ECG Signal Processing: INTECH Open Access Publisher; 2012.
  27. Rodrigues R, editor. Fetal ECG detection in abdominal recordings: a method for QRS location. Computing in Cardiology 2013; 2013: IEEE.
  28. Jafari F, Tinati MA, Mozaffari B, editors. A new fetal ECG extraction method using its skewness value which lies in specific range. 2010 18th Iranian Conference on Electrical Engineering; 2010: IEEE.
  29. Andreotti F, Riedl M, Himmelsbach T, Wedekind D, Zaunseder S, Wessel N, et al., editors. Maternal signal estimation by Kalman filtering and template adaptation for fetal heart rate extraction. Computing in Cardiology 2013; 2013: IEEE.
  30. Andreotti F, Riedl M, Himmelsbach T, Wedekind D, Zaunseder S, Wessel N, et al., editors. Maternal signal estimation by Kalman filtering and template adaptation for fetal heart rate extraction. Computing in Cardiology 2013; 2013: IEEE.
  31. Xu-Wilson M, Carlson E, Cheng L, Vairavan S, editors. Spatial filtering and adaptive rule based fetal heart rate extraction from abdominal fetal ECG recordings. Computing in Cardiology 2013; 2013: IEEE.
  32. von Steinburg SP, Boulesteix A-L, Lederer C, Grunow S, Schiermeier S, Hatzmann W, et al. What is the “normal” fetal heart rate? Peer J. 2013;1:e82. doi.org/10.7717/peerj.82. PubMed PMID: 23761161. PubMed PMCID: 3678114.
  33. Adamson DL, Nelson-Piercy C. Managing palpitations and arrhythmias during pregnancy. Heart. 2007;93:1630-6. PubMed PMID: 18003696. PubMed PMCID: 2095764.
  34. Sohnchen N, Melzer K, Tejada BM, Jastrow-Meyer N, Othenin-Girard V, Irion O, et al. Maternal heart rate changes during labour. Eur J Obstet Gynecol Reprod Biol. 2011;158:173-8. doi.org/10.1016/j.ejogrb.2011.04.038. PubMed PMID: 21641105.
  35. Lukoševičius M, Marozas V, editors. Noninvasive fetal QRS detection using echo state network. Computing in Cardiology 2013; 2013: IEEE.
  36. Zhou Z, Yang K. Fetal electrocardiogram extraction and performance analysis. Journal of Computers. 2012;7:2821-8. doi.org/10.4304/jcp.7.11.2821-2828.
  37. Kuzilek J, Kremen V, Soucek F, Lhotska L. Independent component analysis and decision trees for ECG holter recording de-noising. PLoS One. 2014;9:e98450. doi.org/10.1371/journal.pone.0098450. PubMed PMID: 24905359. PubMed PMCID: 4048160.
  38. Kuzilek J, Lhotska L, editors. Advanced signal processing techniques for fetal ECG analysis. Computing in Cardiology 2013; 2013: IEEE.
  39. Koichubekov B, Korshukov I, Omarbekova N, Riklefs V, Sorokina M, Mkhitaryan X. Computation of nonlinear parameters of heart rhythm using short time ECG segments. Comput Math Methods Med. 2015;2015:983479. doi.org/10.1155/2015/983479. PubMed PMID: 25688286. PubMed PMCID: 4320930.
  40. Zaman TU, Hossain D, Arefin T, Rahman A. Comparative Analysis of De-Noising on ECG Signal. International Journal of Emerging Technology and Advanced Engineering. 2012;2:479-486.
  41. Vatterott PJ, Bailey KR, Hammill SC. Improving the predictive ability of the signal-averaged electrocardiogram with a linear logistic model incorporating clinical variables. Circulation. 1990;81:797-804. doi.org/10.1161/01.CIR.81.3.797. PubMed PMID: 2306832.
  42. Zgallai WA. Second-and third-order statistical characterization of non-linearity and non-gaussianity of adult and fetal ECG signals and noise: INTECH Open Access Publisher; 2013.
  43. Liu C-Y, Li L-P, Zhao L, Zheng D-C, Li P, Liu C-C. A combination method of improved impulse rejection filter and template matching for identification of anomalous intervals in RR sequences. J Med Biol Eng. 2012;32:245-9. doi.org/10.5405/jmbe.1006.
  44. Anandan V, Murugesan C. A New method of Extracting Fetal Electrocardiogram using Wavelet Transform and Genetic Algorithm. In: International Conference on Electrical Engineering and Computer Science (ICEECS). 2012:69-80.
  45. In: PhysioNet. PhysioNet/Computing in Cardiology Challenge 2013: Top Scores. Available from: http://physionet.org/challenge/2013/top-scores.shtml.