Document Type: Original Research

Authors

1 Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran

2 Shiraz Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Cardiac output (CO) is the total volume of blood pumped by the heart per minute and is a function of heart rate and stroke volume. CO is one of the most important parameters for monitoring cardiac function, estimating global oxygen delivery and understanding the causes of high blood pressure. Hence, measuring CO has always been a matter of interest to researchers and clinicians. Several methods have been developed for this purpose, but a majority of them are either invasive, too expensive or need special expertise and experience. Besides, they are not usually risk free and have consequences.
Objective: Here, a semi-invasive system was designed and developed for continuous CO measurement via analyzing and processing arterial pulse waves.
Results: Quantitative evaluation of developed CO estimation system was performed using 7 signals. It showed that it has an acceptable average error of (6.5%) in estimating CO. In addition, this system has the ability to consistently estimate this parameter and to provide a CO versus time curve that assists in tracking changes of CO. Moreover, the system provides such curve for systolic blood pressure, diastolic blood pressure, average blood pressure, heart rate and stroke volume.
Conclusion: Evaluation of the results showed that the developed system is capable of accurately estimating CO. The curves which the system provides for important parameters may be valuable in monitoring hemodynamic status of high-risk surgical patients and critically ill patients in Intensive Care Units (ICU). Therefore, it could be a suitable system for monitoring hemodynamic status of critically ill patients.

Keywords

  1. Ahrens T. Hemodynamics in sepsis. AACN Adv Crit Care. 2006;17:435-45. PubMed PMID: 17091044.
  2. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med. 1999;27:1369-77. doi.org/10.1097/00003246-199907000-00031. PubMed PMID: 10446833.
  3. Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA. 1994;271:226-33. doi.org/10.1001/jama.1994.03510270072043. PubMed PMID: 8080494.
  4. Connors AF, Jr., Speroff T, Dawson NV, Thomas C, Harrell FE, Jr., Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889-97. doi.org/10.1001/jama.1996.03540110043030. PubMed PMID: 8782638.
  5. Meier-Hellmann A, Sakka S, Reinhart K. Supportive therapy of the sepsis syndrome. Clin Chem Lab Med. 1999;37:333-9. doi.org/10.1515/CCLM.1999.056. PubMed PMID: 10353480.
  6. Rivers E. The outcome of patients presenting to the emergency department with severe sepsis or septic shock. Crit Care. 2006;10:154. doi.org/10.1186/cc4973. PubMed PMID: 16887012. PubMed PMCID: 1750981.
  7. Zanotti Cavazzoni SL, Dellinger RP. Hemodynamic optimization of sepsis-induced tissue hypoperfusion. Crit Care. 2006;10 Suppl 3:S2. doi.org/10.1186/cc4829. PubMed PMID: 17164014. PubMed PMCID: 3226124.
  8. Brumfield AM, Andrew ME. Digital pulse contour analysis: investigating age-dependent indices of arterial compliance. Physiol Meas. 2005;26:599-608. doi.org/10.1088/0967-3334/26/5/003. PubMed PMID: 16088055.
  9. Garcia X, Mateu L, Maynar J, Mercadal J, Ochagavia A, Ferrandiz A. Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring. Med Intensiva. 2011;35:552-61. doi.org/10.1016/j.medin.2011.01.014. PubMed PMID: 21411188.
  10. Hall JE. Guyton and Hall textbook of medical physiology. Saunders Elsevier: Philadelphia, PA, USA; 2011.
  11. Berne RM, Levy MN. Cardiovascular Physiology. 7th ed. St. Louis Mosby; 1997.
  12. Ranganathan N, Sivaciyan V, Saksena FB. The art and science of cardiac physical examination: with heart sounds and pulse wave forms on CD: Springer Science & Business Media; 2007.
  13. J Sun JX. Cardiac output estimation using arterial blood pressure waveforms: Massachusetts Institute of Technology; 2006.
  14. Webster J. Medical instrumentation: application and design: John Wiley & Sons; 2009.
  15. Marik PE, Varon J. The hemodynamic derangements in sepsis: implications for treatment strategies. Chest. 1998;114:854-60. doi.org/10.1378/chest.114.3.854. PubMed PMID: 9743178.
  16. Marik PE. Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest. 1993;104:225-9. doi.org/10.1378/chest.104.1.225. PubMed PMID: 8325075.
  17. van Heerden PV, Baker S, Lim SI, Weidman C, Bulsara M. Clinical evaluation of the non-invasive cardiac output (NICO) monitor in the intensive care unit. Anaesth Intensive Care. 2000;28:427-30. PubMed PMID: 10969371.
  18. Nilsson LB, Eldrup N, Berthelsen PG. Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output. Acta Anaesthesiol Scand. 2001;45:680-5. doi.org/10.1034/j.1399-6576.2001.045006680.x. PubMed PMID: 11421824.
  19. Beaulieu Y, Marik PE. Bedside ultrasonography in the ICU: part 1. Chest. 2005;128:881-95. doi.org/10.1378/chest.128.2.881. PubMed PMID: 16100182.
  20. Beaulieu Y, Marik PE. Bedside ultrasonography in the ICU: part 2. Chest. 2005;128:1766-81. doi.org/10.1378/chest.128.3.1766. PubMed PMID: 16162786.
  21. Bein B, Worthmann F, Tonner PH, Paris A, Steinfath M, Hedderich J, et al. Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anesth. 2004;18:185-9. doi.org/10.1053/j.jvca.2004.01.025. PubMed PMID: 15073709.
  22. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol (1985). 1993;74:2566-73. PubMed PMID: 8335593.
  23. Duvall WL, Croft LB, Goldman ME. Can hand-carried ultrasound devices be extended for use by the noncardiology medical community? Echocardiography. 2003;20:471-6. doi.org/10.1046/j.1540-8175.2003.03070.x. PubMed PMID: 12848870.
  24. Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81:376-87. doi.org/10.1097/00000542-199408000-00016. PubMed PMID: 8053588.
  25. Reichert CL, Visser CA, Koolen JJ, vd Brink RB, van Wezel HB, Meyne NG, et al. Transesophageal echocardiography in hypotensive patients after cardiac operations. Comparison with hemodynamic parameters. J Thorac Cardiovasc Surg. 1992;104:321-6. PubMed PMID: 1495293.
  26. Porter RS, Nester BA, Dalsey WC, O’Mara M, Gleeson T, Pennell R, et al. Use of ultrasound to determine need for laparotomy in trauma patients. Ann Emerg Med. 1997;29:323-30. doi.org/10.1016/S0196-0644(97)70343-3. PubMed PMID: 9055770.
  27. Tso P, Rodriguez A, Cooper C, Militello P, Mirvis S, Badellino MM, et al. Sonography in blunt abdominal trauma: a preliminary progress report. J Trauma. 1992;33:39-43; discussion -4. PubMed PMID: 1635104.
  28. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98-104. doi.org/10.1164/rccm.200109-016OC. PubMed PMID: 12091178.
  29. Lefrant JY, Bruelle P, Aya AG, Saissi G, Dauzat M, de La Coussaye JE, et al. Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med. 1998;24:347-52. doi.org/10.1007/s001340050578. PubMed PMID: 9609413.
  30. Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30:2060-6. doi.org/10.1007/s00134-004-2430-2. PubMed PMID: 15368037.
  31. Brumfield AM, Andrew ME. Digital pulse contour analysis: investigating age-dependent indices of arterial compliance. Physiol Meas. 2005;26:599-608. doi.org/10.1088/0967-3334/26/5/003. PubMed PMID: 16088055.
  32. Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM. A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med. 1999;27:1203-13. doi.org/10.1097/00003246-199906000-00053. PubMed PMID: 10397230.
  33. Reuter DA, Goetz AE. Measurement of cardiac output. Anaesthesist. 2005;54:1135-51; quiz 52-3. doi.org/10.1007/s00101-005-0924-0. PubMed PMID: 16228152.
  34. Marik PE, Pendelton JE, Smith R. A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by thermodilution and ventricular angiography. Crit Care Med. 1997;25:1545-50. doi.org/10.1097/00003246-199709000-00023. PubMed PMID: 9295830.
  35. Karamanoglu M. A system for analysis of arterial blood pressure waveforms in humans. Comput Biomed Res. 1997;30:244-55. doi.org/10.1006/cbmr.1997.1450. PubMed PMID: 9281331.
  36. Saba PS, Roman MJ, Pini R, Spitzer M, Ganau A, Devereux RB. Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects. J Am Coll Cardiol. 1993;22:1873-80. doi.org/10.1016/0735-1097(93)90772-S. PubMed PMID: 8245342.
  37. Garcia X, Mateu L, Maynar J, Mercadal J, Ochagavia A, Ferrandiz A. [Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring]. Med Intensiva. 2011;35:552-61. doi.org/10.1016/j.medin.2011.01.014 . PubMed PMID: 21411188.
  38. Phillips RA, Hood SG, Jacobson BM, West MJ, Wan L, May CN. Pulmonary Artery Catheter (PAC) Accuracy and Efficacy Compared with Flow Probe and Transcutaneous Doppler (USCOM): An Ovine Cardiac Output Validation. Crit Care Res Pract. 2012;2012:621496. doi.org/10.1155/2012/621496. PubMed PMID: 22649718. PubMed PMCID: 3357512.
  39. de Wilde RB, Schreuder JJ, van den Berg PC, Jansen JR. An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia. 2007;62:760-8. doi.org/10.1111/j.1365-2044.2007.05135.x. PubMed PMID: 17635422.
  40. Su BC, Tsai YF, Chen CY, Yu HP, Yang MW, Lee WC, et al. Cardiac output derived from arterial pressure waveform analysis in patients undergoing liver transplantation: validity of a third-generation device. Transplant Proc. 2012;44:424-8. doi.org/10.1016/j.transproceed.2011.12.036. PubMed PMID: 22410034.
  41. Romano SM, Pistolesi M. Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med. 2002;30:1834-41. doi.org/10.1097/00003246-200208000-00027. PubMed PMID: 12163802.
  42. Scolletta S, Romano SM, Biagioli B, Capannini G, Giomarelli P. Pressure recording analytical method (PRAM) for measurement of cardiac output during various haemodynamic states. Br J Anaesth. 2005;95:159-65. doi.org/10.1093/bja/aei154. PubMed PMID: 15894561.
  43. Scolletta S, Gregoric ID, Muzzi L, Radovancevic B, Frazier OH. Pulse wave analysis to assess systemic blood flow during mechanical biventricular support. Perfusion. 2007;22:63-6. doi.org/10.1177/0267659106074784. PubMed PMID: 17633137.
  44. Kazanavicius E, Gircys R, Vrubliauskas A, Lugin S. Mathematical methods for determining the foot point of the arterial pulse wave and evaluation of proposed methods. Information Technology and control. 2015;34(1).
  45. Singh M, Nagpal S. Features Extraction in Second Derivative of Finger PPG Signal: A Review. International Journal of Computer Science and Communication. 2013;4(2).
  46. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016. Available from: https://mimic.physionet.org.