Document Type : Short Communication
Authors
1 Dentist, Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
2 Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
3 Medical Physics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract
A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce “Triple M” effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some “hot spots” in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed.
Keywords
- Mortazavi SM, Neghab M, Anoosheh SM, Bahaeddini N, Mortazavi G, Neghab P, et al. High-field MRI and mercury release from dental amalgam fillings. Int J Occup Environ Med. 2014;5:101-5. PubMed PMID: 24748001.
- Mortazavi SM, Daiee E, Yazdi A, Khiabani K, Kavousi A, Vazirinejad R, et al. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use. Pak J Biol Sci. 2008;11:1142-6. doi.org/10.3923/pjbs.2008.1142.1146. PubMed PMID: 18819554.
- WHO. Promoting the phase down approach of dental amalgam in developing countries. Geneva: World Health Organization; 2014.
- Yilmaz S, Misirlioglu M. The effect of 3 T MRI on microleakage of amalgam restorations. Dentomaxillofac Radiol. 2013;42:20130072. doi.org/10.1259/dmfr.20130072. PubMed PMID: 23674614. PubMed PMCID: 3756742.
- Shahidi SH, Bronoosh P, Alavi AA, Zamiri B, Sadeghi AR, Bagheri MH, et al. Effect of magnetic resonance imaging on microleakage of amalgam restorations: an in vitro study. Dentomaxillofac Radiol. 2009;38:470-4. doi.org/10.1259/dmfr/30077669. PubMed PMID: 19767518.
- Kursun S, Öztas B, Atas H, Tastekin M. Effects of X-rays and magnetic resonance imaging on mercury release from dental amalgam into artificial saliva. Oral Radiology. 2014;30:142-6. doi.org/10.1007/s11282-013-0154-0.
- Mortazavi G, Mortazavi SM. Increased mercury release from dental amalgam restorations after exposure to electromagnetic fields as a potential hazard for hypersensitive people and pregnant women. Rev Environ Health. 2015;30:287-92. doi.org/10.1515/reveh-2015-0017. PubMed PMID: 26544100.
- Mortazavi SM, Motamedifar M, Namdari G, Taheri M, Mortazavi AR, Shokrpour N. Non-linear adaptive phenomena which decrease the risk of infection after pre-exposure to radiofrequency radiation. Dose Response. 2014;12:233-45. doi.org/10.2203/dose-response.12-055.Mortazavi. PubMed PMID: 24910582. PubMed PMCID: 4036396.
- Mortazavi SM, Taeb S, Dehghan N. Alterations of visual reaction time and short term memory in military radar personnel. Iran J Public Health. 2013;42:428-35. PubMed PMID: 23785684. PubMed PMCID: 3684731.
- Mortazavi SM, Rouintan MS, Taeb S, Dehghan N, Ghaffarpanah AA, Sadeghi Z, et al. Human short-term exposure to electromagnetic fields emitted by mobile phones decreases computer-assisted visual reaction time. Acta Neurol Belg. 2012;112:171-5. doi.org/10.1007/s13760-012-0044-y. PubMed PMID: 22426673.
- Mortazavi S, Mosleh-Shirazi M, Tavassoli A, Taheri M, Mehdizadeh A, Namazi S, et al. Increased Radioresistance to Lethal Doses of Gamma Rays in Mice and Rats after Exposure to Microwave Radiation Emitted by a GSM Mobile Phone Simulator. Dose Response. 2013;11:281-92. doi.org/10.2203/dose-response.12-010.Mortazavi. PubMed PMID: 23930107. PubMed PMCID: 3682203.
- Mortazavi S, Mosleh-Shirazi M, Tavassoli A, Taheri M, Bagheri Z, Ghalandari R, et al. A comparative study on the increased radioresistance to lethal doses of gamma rays after exposure to microwave radiation and oral intake of flaxseed oil. Iranian Journal of Radiation Research. 2011;9:9-14.
- Mortavazi S, Habib A, Ganj-Karami A, Samimi-Doost R, Pour-Abedi A, Babaie A. Alterations in TSH and Thyroid Hormones following Mobile Phone Use. Oman Med J. 2009;24:274-8. doi.org/10.5001/omj.2009.56. PubMed PMID: 22216380. PubMed PMCID: 3243874.
- Mortazavi SM, Daiee E, Yazdi A, Khiabani K, Kavousi A, Vazirinejad R, et al. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use. Pak J Biol Sci. 2008;11:1142-6. doi.org/10.3923/pjbs.2008.1142.1146. PubMed PMID: 18819554.
- Mortazavi SM, Ahmadi J, Shariati M. Prevalence of subjective poor health symptoms associated with exposure to electromagnetic fields among university students. Bioelectromagnetics. 2007;28:326-30. doi.org/10.1002/bem.20305. PubMed PMID: 17330851.
- Mortazavi S, Motamedifar M, Namdari G, Taheri M, Mortazavi A. Counterbalancing immunosuppression-induced infections during long-term stay of humans in space. Journal of Medical Hypotheses and Ideas. 2013;7:8-10.
- Mortazavi S. Safety issue of mobile phone base stations. J Biomed Phys Eng. 2013;3:1-2.
- Mortazavi S, Parsanezhad M, Kazempour M, Ghahramani P, Mortazavi A, Davari M. Male reproductive health under threat: Short term exposure to radiofrequency radiations emitted by common mobile jammers. J Hum Reprod Sci. 2013;6:124-8. doi.org/10.4103/0974-1208.117178. PubMed PMID: 24082653. PubMed PMCID: 3778601.
- Rafati A, Rahimi S, Talebi A, Soleimani A, Haghani M, Mortazavi SM. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study. J Biomed Phys Eng. 2015;5:133-42. PubMed PMID: 26396969. PubMed PMCID: 4576874.
- Shekoohi Shooli F, Mortazavi SA, Jarideh S, Nematollahii S, Yousefi F, Haghani M, et al. Short-Term Exposure to Electromagnetic Fields Generated by Mobile Phone Jammers Decreases the Fasting Blood Sugar in Adult Male Rats. J Biomed Phys Eng. 2016;6:27-32. PubMed PMID: 27026952. PubMed PMCID: 4795326.
- Mortazavi SMJ, Tavassoli A, Ranjbari F, Moammaiee P. Effects of laptop computers’ electromagnetic field on sperm quality. Journal of Reproduction & Infertility. 2010;11(4).
- Mortazavi SM, Vazife-Doost S, Yaghooti M, Mehdizadeh S, Rajaie-Far A. Occupational exposure of dentists to electromagnetic fields produced by magnetostrictive cavitrons alters the serum cortisol level. J Nat Sci Biol Med. 2012;3:60-4. doi.org/10.4103/0976-9668.95958. PubMed PMID: 22690053. PubMed PMCID: 3361780.
- Mortazavi G, Haghani M, Rastegarian N, Zarei S, Mortazavi SMJ. Increased Release of Mercury from Dental Amalgam Fillings due to Maternal Exposure to Electromagnetic Fields as a Possible Mechanism for the High Rates of Autism in the Offspring: Introducing a Hypothesis. Journal of Biomedical Physics & Engineering. 2016;6(1):41-46. PMCID: PMC4795328.
- Mahmoudi R, Mortazavi S, Safari S, Nikseresht M, Mozdarani H, Jafari M, et al. Effects of microwave electromagnetic radiations emitted from common Wi-Fi routers on rats’ sperm count and motility. Int J Radiat Res. 2015;13:363-8.
- Haghnegahdar A, Khosrovpanah H, Andisheh-Tadbir A, Mortazavi G, Saeedi Moghadam M, Mortazavi S, et al. Design and fabrication of helmholtz coils to study the effects of pulsed electromagnetic fields on the healing process in periodontitis: preliminary animal results. J Biomed Phys Eng. 2014;4:83-90. PubMed PMID: 25505775. PubMed PMCID: 4258865.
- Paknahad M, Shahidi S, Mortazavi SMJ, Mortazavi G, Moghadam MS, Nazhvani AD. The Effect of Pulsed Electromagnetic Fields on Microleakage of Amalgam Restorations: An in Vitro Study. Shiraz E-Medical Journal. 2016;17(2).
- Vanishree HS, Shanthala BM, Bobby W. The comparative evaluation of fracture resistance and microleakage in bonded amalgam, amalgam, and composite resins in primary molars. Indian J Dent Res. 2015;26:446-50. doi.org/10.4103/0970-9290.172019. PubMed PMID: 26672412.
- Kappe C, Dallinger D, Murphree S. Practical Microwave Synthesis for Organic Chemists 2009. Germany, Wiley-VCH: Weinheim; 2009.
- Regier M, Schubert H, Knoerzer K. TThe microwave processing of foods. Toronto: Elsevier; 2005.