Document Type : Original Research

Authors

1 Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output.Method: Five sources were simulated based on problems each with a specific geometric structure and conditions using MCNPX code. Tallies proportional to the output were used to calculate the results for the influence of source geometry on output.Results: The results of this work include the size of the optimal thickness of 5 miniature sources, energy spectrum of the sources per 50 kev and also the axial and transverse dose of simulated sources were calculated based on these thicknesses. The miniature source geometric was affected on the output x-ray tube.Conclusion: The result of this study demonstrates that hemispherical-conical, hemispherical and truncated-conical miniature sources were determined as the most suitable tools.

Keywords

  1. Cho SO, Heo SH. Super miniature X-ray tube using NANO material field emitter: Google Patents; 2012.
  2. Choe KS, Liauw SL. Radiotherapeutic strategies in the management of low-risk prostate cancer. ScientificWorldJournal. 2010;10:1854-69. doi.org/10.1100/tsw.2010.179. PubMed PMID: 20852828.
  3. Porter AT, Blasko JC, Grimm PD, Reddy SM, Ragde H. Brachytherapy for prostate cancer. CA Cancer J Clin. 1995;45:165-78. doi.org/10.3322/canjclin.45.3.165. PubMed PMID: 7743420.
  4. Kubo HD, Glasgow GP, Pethel TD, Thomadsen BR, Williamson JF. High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys. 1998;25:375-403. doi.org/10.1118/1.598232. PubMed PMID: 9571605.
  5. Gierga DP, Shefer RE. Characterization of a soft X-ray source for intravascular radiation therapy. Int J Radiat Oncol Biol Phys. 2001;49:847-56. doi.org/10.1016/S0360-3016(00)01510-8. PubMed PMID: 11172969.
  6. Heoa S, Haa J, Choa S. An Optimization of Super-Miniature X-ray Target. 2011.
  7. Dinsmore M, Harte KJ, Sliski AP, Smith DO, Nomikos PM, Dalterio MJ, et al. A new miniature x-ray source for interstitial radiosurgery: device description. Med Phys. 1996;23:45-52. doi.org/10.1118/1.597790. PubMed PMID: 8700032.
  8. Ihsan A, Heo SH, Kim HJ, Kang CM, Cho SO. An optimal design of X-ray target for uniform X-ray emission from an electronic brachytherapy system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2011;269:1053-7. doi.org/10.1016/j.nimb.2011.03.001.
  9. Rivard MJ, Davis SD, DeWerd LA, Rusch TW, Axelrod S. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source. Med Phys. 2006;33:4020-32. doi.org/10.1118/1.2357021. PubMed PMID: 17153382.
  10. Rivard MJ, Rusch TW, Axelrod S. Radiological dependence of electronic brachytherapy simulation on input parameters. Medical Physics. 2006:11747-4502.
  11. Silvern D, Rusch T, Zaider M, editors Dosimetric Benefits of an Adjustable-Energy Electronic Brachytherapy Source.Medical Physics. 2004;31:1880.
  12. Hiatt JR, Davis SD, Rivard MJ. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model. Med Phys. 2015;42:2764-76. doi.org/10.1118/1.4919280. PubMed PMID: 26127029.
  13. Rong Y, Welsh JS. New technology in high-dose-rate brachytherapy with surface applicators for non-melanoma skin cancer treatment: electronic miniature x-ray brachytherapy. Skin Cancer Overview: InTech; 2011.
  14. Liu DMC. Characterization of novel electronic brachytherapy system. Montreal: McGill University; 2007.
  15. Holt RW, Rivard MJ. Electronic brachytherapy: comparisons with external-beam and high-dose-rate 192Ir brachytherapy. J Am Coll Radiol. 2008;5:221-3. doi.org/10.1016/j.jacr.2007.12.001. PubMed PMID: 18312972.
  16. Clausen S, Schneider F, Jahnke L, Fleckenstein J, Hesser J, Glatting G, et al. A Monte Carlo based source model for dose calculation of endovaginal TARGIT brachytherapy with INTRABEAM and a cylindrical applicator. Z Med Phys. 2012;22:197-204. doi.org/10.1016/j.zemedi.2012.06.003. PubMed PMID: 22739321.
  17. Grobmyer SR, Lightsey JL, Bryant CM, Shaw C, Yeung A, Bhandare N, et al. Low-kilovoltage, single-dose intraoperative radiation therapy for breast cancer: results and impact on a multidisciplinary breast cancer program. J Am Coll Surg. 2013;216:617-23. doi.org/10.1016/j.jamcollsurg.2012.12.038. PubMed PMID: 23415885.
  18. Chiu-Tsao S-T, Davis S, Pike T, DeWerd LA, Rusch TW, Burnside RR, et al. Two-dimensional dosimetry for an electronic brachytherapy source using radiochromic EBT film: Determination of TG43 parameters. Brachytherapy. 2007;6:110. doi.org/10.1016/j.brachy.2007.02.110.
  19. Kelley L, Axelrod S, Dutta A. SU-DD-A2-03: Measurement of Skin Dose When Using FlexiShield® with the Axxent® Electronic Brachytherapy System. Medical Physics. 2008;35:2632-. doi.org/10.1118/1.2961358.
  20. Holt RW, Thomadsen BR, Orton CG. Point/Counterpoint. Miniature x-ray tubes will ultimately displace Ir-192 as the radiation sources of choice for high dose rate brachytherapy. Med Phys. 2008;35:815-7. doi.org/10.1118/1.2836415. PubMed PMID: 18404918.
  21. Ballester-Sanchez R, Pons-Llanas O, Candela-Juan C, Celada-Alvarez FJ, de Unamuno-Bustos B, Llavador-Ros M, et al. Efficacy and safety of electronic brachytherapy for superficial and nodular basal cell carcinoma. J Contemp Brachytherapy. 2015;7:231-8. doi.org/10.5114/jcb.2015.52140. PubMed PMID: 26207112. PubMed PMCID: 4499517.
  22. Beatty J, Biggs PJ, Gall K, Okunieff P, Pardo FS, Harte KJ, et al. A new miniature x-ray device for interstitial radiosurgery: dosimetry. Med Phys. 1996;23:53-62. doi.org/10.1118/1.597791. PubMed PMID: 8700033.
  23. Eaton DJ, Duck S. Dosimetry measurements with an intra-operative x-ray device. Phys Med Biol. 2010;55:N359-69. doi.org/10.1088/0031-9155/55/12/N02. PubMed PMID: 20505225.
  24. Hendricks JS, McKinney GW, Fensin ML, James MR, Johns RC, Durkee JW, et al. MCNPX 2.6. 0 Extensions. Los Alamos National Laboratory. 2008.
  25. Ay MR, Shahriari M, Sarkar S, Adib M, Zaidi H. Monte carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C. Phys Med Biol. 2004;49:4897-917. doi.org/10.1088/0031-9155/49/21/004. PubMed PMID: 15584526.
  26. McKinney G, Durkee J, Waters L, Pelowitz D, James M, Hendricks J. Review of Monte Carlo all-particle transport codes and overview of recent MCNPX features. PoS. 2006;088.
  27. Braga MR, Penna R, Vasconcelos DC, Pereira C, Guerra BT, Silva C, editors. Nuclear densimeter of soil simulated in MCNP-4C code. International Nuclear Atlantic Conference: Rio de Janeiro, RJ, Brazil; 2009.
  28. Ihsan A, Heo SH, Cho SO. Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2007;264:371-7. doi.org/10.1016/j.nimb.2007.09.023.
  29. Grant EJ, Posada CM, Castano CH, Lee HK, editors. Electron field emission Particle in Cell (PIC) coupled with MCNPX simulation of a CNT-based flat-panel-X-ray source. Medical Imaging 2011: Physics of Medical Imaging. 2011;7961:796108.
  30. McConn RJ, Gesh CJ, Pagh RT, Rucker RA, Williams III R. Compendium of material composition data for radiation transport modeling. WA (US): Pacific Northwest National Laboratory (PNNL), Richland; 2011.
  31. Hughes III HG. Summary of DBCN Options in MCNP6. Los Alamos National Laboratory (LANL); 2013.
  32. Pelowitz D, Durkee J, Elson J, Fensin M, James M, Johns R, et al. MCNPX 2.7. 0 Extensions, LA-UR-11-02295. New Mexico: Los Alamos National Laboratory; 2011.
  33. Nasseri MM. Determination of tungsten target parameters for transmission X-ray tube: A simulation study using Geant4. Nuclear Engineering and Technology. 2016;48:795-8. doi.org/10.1016/j.net.2016.01.006.
  34. Seibert JA. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production. J Nucl Med Technol. 2004;32:139-47. PubMed PMID: 15347692.
  35. Mordechai S. Applications of Monte Carlo method in science and engineering. InTech, Rijeka. 2011:6.
  36. Ganguly A, Karim R. Essential physics for radiology and imaging. New Delhi: Academic Publishers; 2016.
  37. Zoubair M, El Bardouni T, Allaoui O, Boulaich Y, El Bakkari B, El Younoussi C, et al. Computing Efficiency Improvement in Monte Carlo Simulation of a 12 MV Photon Beam Medical LINAC. World Journal of Nuclear Science and Technology. 2013;3:14. doi.org/10.4236/wjnst.2013.31003.
  38. Ihsan A, Heo SH, Cho SO. A microfocus X-ray tube based on a microstructured X-ray target. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2009;267:3566-73. doi.org/10.1016/j.nimb.2009.08.012.
  39. Sukowski F, Uhlmann N. Monte Carlo Simulations in NDT. Applications of Monte Carlo Method in Science and Engineering: InTech; 2011.
  40. Wang R, Pei L, Huang Z. Study on Calculation of Detector Flux with Monte Carlo Methods. Journal of Nuclear Science and Technology. 2000;37:436-40.
  41. Davis SD. Air-kerma strength determination of a miniature x-ray source for brachytherapy applications. 2009.
  42. Malabre-O’Sullivan N. Low energy photon mimic of the tritium beta decay energy spectrum. 2013.
  43. Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets. Acta Physica Polonica-Series A General Physics. 2009;115:1180. doi.org/10.12693/APhysPolA.115.1180.
  44. Sofiienko A, Jarvis C, Ådne V. Electron range evaluation and X-ray conversion optimization in tungsten transmission-type targets with the aid of wide electron beam Monte Carlo simulations