Document Type : Original Research
Authors
Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as wavelet-based features, both extracted from pixel-based time-signal intensity curves to segment prostate lesions on prostate DCE-MRI. Methods: Quantitative dynamic contrast-enhanced MRI data were acquired on 22 patients. Optimal features selected by forward selection are used for the segmentation of prostate lesions by applying fuzzy c-means (FCM) clustering. The images were reviewed by an expert radiologist and manual segmentation performed as the ground truth. Results: Empirical results indicate that fuzzy c-mean classifier can achieve better results in terms of sensitivity, speciïcity when semi-quantitative features were considered versus wavelet kinetic features for lesion segmentation (Sensitivity of 87.58% and 75.62%, respectively) and (Specificity of 89.85% and 68.89 %, respectively).Conclusion: The proposed segmentation algorithm in this work can potentially be implemented for automatic prostate lesion detection in a computer aided diagnosis scheme and combined with morphologic features to increase diagnostic credibility
Keywords
- Stamey TA, Caldwell M, McNeal JE, Nolley R, Hemenez M, Downs J. The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J Urol. 2004;172:1297-301. doi.org/10.1097/01.ju.0000139993.51181.5d. PubMed PMID: 15371827.
- Artan Y, Langer DL, Haider MA, van der Kwast TH, Evans AJ, Wernick MN, et al. Prostate cancer segmentation with multispectral MRI using cost-sensitive conditional random fields. 28 June-1 July 2009 . Boston: Biomedical Imaging: From Nano to Macro, 2009 ISBI’09 IEEE International Symposium on; 2009.
- Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol. 2012;198:1277-88. doi.org/10.2214/AJR.12.8510. PubMed PMID: 22623539.
- Mostaar A, Ashtiyani M, Lavasany SN, Rexhepi AH, Kongoli R, Dey A, et al. AAn Improved Ant Colony Algorithm Optimization for Automated MRI Segmentation Using Probabilistic Atlas. Int J Innov Res Sci Eng. 2015;3:399, 406.
- Turkbey B, Bernardo M, Merino MJ, Wood BJ, Pinto PA, Choyke PL. MRI of localized prostate cancer: coming of age in the PSA era. Diagn Interv Radiol. 2012;18:34-45. PubMed PMID: 21922459.
- Puech P, Betrouni N, Makni N, Dewalle AS, Villers A, Lemaitre L. Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. Int J Comput Assist Radiol Surg. 2009;4:1-10. doi.org/10.1007/s11548-008-0261-2. PubMed PMID: 20033597.
- van Dorsten FA, van der Graaf M, Engelbrecht MR, van Leenders GJ, Verhofstad A, Rijpkema M, et al. Combined quantitative dynamic contrast-enhanced MR imaging and 1H MR spectroscopic imaging of human prostate cancer. Journal of Magnetic Resonance Imaging. 2004;20:279-87. doi.org/10.1002/jmri.20113.
- Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging 1. Radiology. 2006;241:449-58. doi.org/10.1148/radiol.2412051866.
- Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med Imaging Rev. 2009;3:91-107. doi.org/10.2174/157340507780619179. PubMed PMID: 19829742. PubMed PMCID: 2760951.
- Birgani PM, Ashtiyani M, editors. Wireless Real-time Brain Mapping. 27-30 Nov. 2006. Guilin: Communication Technology, 2006 ICCT’06 International Conference on; 206.
- Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, van Leenders GJ, Hulsbergen-Van De Kaa CA, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229:248-54. doi.org/10.1148/radiol.2291020200. PubMed PMID: 12944607.
- Artan Y, Haider MA, Langer DL, van der Kwast TH, Evans AJ, Yang Y, et al. Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process. 2010;19:2444-55. doi.org/10.1109/TIP.2010.2048612. PubMed PMID: 20716496.
- Liu X, Langer DL, Haider MA, Yang Y, Wernick MN, Yetik IS. Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans Med Imaging. 2009;28:906-15. doi.org/10.1109/TMI.2009.2012888. PubMed PMID: 19164079.
- Guo Y, Ruan S, Walker P, Feng Y, editors . Prostate cancer segmentation from multiparametric MRI based on fuzzy Bayesian model. 29 April-2 May 2014. Beijing: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on; 2014.
- Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045-57. doi.org/10.1007/s10278-013-9622-7. PubMed PMID: 23884657. PubMed PMCID: 3824915.
- Lu W, Yao J, Lu C, Prindiville S, Chow C, editors. DCE-MRI segmentation and motion correction based on active contour model and forward mapping. 19-20 June 2006. Las Vegas: Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2006 SNPD 2006 Seventh ACIS International Conference on; 2006.
- Maintz JA, Viergever MA. A survey of medical image registration. Medical image analysis. 1998;2:1-36. doi.org/10.1016/S1361-8415(01)80026-8.
- Chen CJ, Chang RF, Moon WK, Chen DR, Wu HK. 2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration. Ultrasound Med Biol. 2006;32:837-46. doi.org/10.1016/j.ultrasmedbio.2006.02.1406. PubMed PMID: 16785006.
- Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671-5. doi.org/10.1038/nmeth.2089. PubMed PMID: 22930834.
- Padhani AR. Dynamic contrast-enhanced MRI studies in human tumours. Br J Radiol. 1999;72:427-31. doi.org/10.1259/bjr.72.857.10505003. PubMed PMID: 10505003.
- Alonzi R, Padhani AR, Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol. 2007;63:335-50. doi.org/10.1016/j.ejrad.2007.06.028. PubMed PMID: 17689907.
- Navaei-Lavasani S, Fathi-Kazerooni A, Saligheh-Rad H, Gity M. Discrimination of Benign and Malignant Suspicious Breast Tumors Based on Semi-Quantitative DCE-MRI Parameters Employing Support Vector Machine. Frontiers in Biomedical Technologies. 2015;2:87-92.
- Fotouhi A, Eqlimi E, Makkiabadi B, editors. Evaluation of adaptive parafac alogorithms for tracking of simulated moving brain sources. 25-29 Aug. 2015. Milan: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE; 2015.
- Eqlimi E. Resting State Functional Connectivity Analysis Based on Mutual Information Graphs For MS Patients. 2013.
- Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology. 1999;211:101-10. doi.org/10.1148/radiology.211.1.r99ap38101. PubMed PMID: 10189459.
- Isebaert S, De Keyzer F, Haustermans K, Lerut E, Roskams T, Roebben I, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol. 2012;81:e217-22. doi.org/10.1016/j.ejrad.2011.01.107. PubMed PMID: 21349667.
- Navaei Lavasani S, Fathi Kazerooni A, Saligheh Rad H, Gity M. Discrimination of Benign and Malignant Suspicious Breast Tumors Based on Semi-Quantitative DCE-MRI Parameters Employing Support Vector Machine. Frontiers in Biomedical Technologies. 2015;2:87-92.
- Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proceedings of the IEEE. 1996;84:626-38. doi.org/10.1109/5.488704.
- Mallat S. A wavelet tour of signal processing: Academic press. Cambridge: Academic press; 1999.
- Poularikas AD. Transforms and applications handbook. Florida: CRC press; 2010.
- Struzik ZR, Siebes A, editors. The Haar wavelet transform in the time series similarity paradigm. European Conference on Principles of Data Mining and Knowledge Discovery: Springer; 1999.
- Birgani PM, Ashtiyani M, Asadi S, editors. MRI segmentation using fuzzy c-means clustering algorithm basis neural network. 7-11 April 2008. Damascus: Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on; 2008.
- Ashtiyani M, Asadi S, Birgani PM, editors . ICA-based EEG classification using fuzzy c-mean algorithm. 7-11 April 2008. Damascus. Information and Communication Technologies: From Theory to Applications, 2008 ICTTA 2008 3rd International Conference on; 2008.
- Ashtiyani M, Behbahani S, Asadi S, Birgani PM, editors . Transmitting encrypted data by wavelet transform and neural network. 15-18 Dec. 2007. Giza: Signal Processing and Information Technology, 2007 IEEE International Symposium on; 2007.
- Mansoory MS, Ashtiyani M, Sarabadani H. Automatic crack detection in eggshell based on SUSAN Edge Detector using Fuzzy Thresholding. Modern Applied Science. 2011;5:117. doi.org/10.5539/mas.v5n6p117.
- Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences. 1984;10:191-203. doi.org/10.1016/0098-3004(84)90020-7.
- Kohavi R, John GH. Wrappers for feature subset selection. Artificial intelligence. 1997;97:273-324. doi.org/10.1016/S0004-3702(97)00043-X.
- Jamshidi O, Pilevar AH. Automatic segmentation of medical images using fuzzy c-means and the genetic algorithm. Journal of Computational Medicine. 2013;2013.
- Udupa JK, Leblanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, et al. A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph. 2006;30:75-87. doi.org/10.1016/j.compmedimag.2005.12.001. PubMed PMID: 16584976.
- Medved M, Karczmar G, Yang C, Dignam J, Gajewski TF, Kindler H, et al. Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: Variability and changes in tumor tissue over time. J Magn Reson Imaging. 2004;20:122-8. doi.org/10.1002/jmri.20061. PubMed PMID: 15221817.
- Jackson A, Reinsberg S, Sohaib S, Charles-Edwards E, Jhavar S, Christmas T, et al. Dynamic contrast-enhanced MRI for prostate cancer localization. The British journal of radiology. 2014.