Document Type: Review Article

Authors

1 Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran

2 Department of Electronic Engineering, Tabriz University, Tabriz, Iran

3 Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Deep brain stimulation (DBS) is known as the most effective technique in the treatment of neurodegenerative diseases, especially Parkinson disease (PD) and epilepsy. Relative healing and effective control of disease symptoms are the most significant reasons for the tangible tendency in use and development of this technology. Nevertheless, more cellular and molecular investigations are required to reveal the detailed mechanism of DBS. Here, we reviewed the methods, challenges and the ways to overcome the limitations of DBS. Also, challenges in probe fabrication technology, material selection, related mechanical stability and biocompatibility concerns are discussed. Finally, closed- and open-loop stimulation systems were compared.

Keywords

  1. Franklin B. An Account of the Effects of Electricity in Paralytic Cases. In a Letter to John Pringle, MDFRS from Benjamin Franklin, Esq; FRS. Philosophical Transactions (1683-1775). 1757;50:481-
  2. Mohammadi A, Mehdizadeh AR. Deep Brain Stimulation and Gene Expression Alterations in Parkinson’s Disease. J Biomed Phys Eng. 2016;6:47-50. PubMed PMID: 27672624; PubMed Central PMCID: PMC5022754.
  3. Javadpour A, Mohammadi A. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth. J Biomed Phys Eng. 2016;6:95-108. PubMed PMID: 27672629; PubMed Central PMCID: PMC5022759.
  4. Javadpour A, Mohammadi A. Implementing a Smart Method to Eliminate Artifacts of Vital Signals. J Biomed Phys Eng. 2015;5:199-206. PubMed PMID: 26688799; PubMed Central PMCID: PMC4681465.
  5. Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng. 1970;17:238-47. PubMed PMID: 5431636.
  6. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37-44. doi: 10.1016/S1474-4422(12)70264-8. PubMed PMID: 23168021.
  7. Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, et al. Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg. 2009;110:1283-90. doi: 10.3171/2008.12.JNS08885. PubMed PMID: 19301961.
  8. de Koning PP, Figee M, van den Munckhof P, Schuurman PR, Denys D. Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets. Curr Psychiatry Rep. 2011;13:274-82. doi: 10.1007/s11920-011-0200-8. PubMed PMID: 21505875.
  9. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370-84. doi: 10.1016/j.neuron.2011.08.023. PubMed PMID: 22017994.
  10. Okun MS, Mann G, Foote KD, Shapira NA, Bowers D, Springer U, et al. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. J Neurol Neurosurg Psychiatry. 2007;78:310-4. doi: 10.1136/jnnp.2006.095315. PubMed PMID: 17012341; PubMed Central PMCID: PMC2117652.
  11. Lee H-M, Kwon KY, Li W, Ghovanloo M. A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE Journal of Solid-State Circuits. 2015;50:360-74.
  12. Fasano A, Daniele A, Albanese A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol. 2012;11:429-42. doi: 10.1016/S1474-4422(12)70049-2. PubMed PMID: 22516078.
  13. Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73:1204-12. doi: 10.1016/j.biopsych.2013.01.034. PubMed PMID: 23562618.
  14. Kim EG, John JK, Tu H, Zheng Q, Loeb J, Zhang J, et al. A hybrid silicon–parylene neural probe with locally flexible regions. Sensors and Actuators B: Chemical. 2014;195:416-22.
  15. Lee HJ, Son Y, Kim J, Lee CJ, Yoon ES, Cho IJ. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. Lab Chip. 2015;15:1590-7. doi: 10.1039/c4lc01321b. PubMed PMID: 25651943.
  16. Chen P-C, Lal A, editors. Detachable ultrasonic enabled inserter for neural probe insertion using biodissolvable polyethylene glycol. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on; 2015: IEEE.
  17. Lozano AM, Giacobbe P, Hamani C, Rizvi SJ, Kennedy SH, Kolivakis TT, et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J Neurosurg. 2012;116:315-22. doi: 10.3171/2011.10.JNS102122. PubMed PMID: 22098195.
  18. Rhew H-G, Jeong J, Fredenburg JA, Dodani S, Patil PG, Flynn MP. A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE Journal of Solid-State Circuits. 2014;49:2213-27.
  19. Robinson DA. The electrical properties of metal microelectrodes. Proceedings of the IEEE. 1968;56:1065-71.
  20. Cho S-H, Lu HM, Cauller L, Romero-Ortega MI, Lee J-B, Hughes GA. Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sensors Journal. 2008;8:1830-6.