Document Type : Original Research

Authors

1 Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 Nuclear Medicine Department, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3 Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Introduction: With increasing the usage of myocardial perfusion imaging (MPI) for the diagnosis of ischemic heart disease, we aimed to evaluate the side effects of low-dose radiation induced by this technique on blood elements, especially proteins and liver function factors.
Material and Methods: 40 eligible patients (Mean age: 54.62±10.35, 22 female and 18 male), who had referred to the nuclear medicine department for MPI from May till August 2014, were enrolled in the study. A blood sample was taken from each patient just before and 24 hours after the injection of 740Mbq of Tecnetium-99m Methoxy isobutyl isonitrile (99mTc-MIBI) in the rest phase of the MPI in a reference medical laboratory; blood tests included total protein (TP), albumin (Alb), globulin (Glo), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), direct bilirubin (D.Bili), total bilirubin (T.Bili), serum iron (SI), total iron bounding capacity (TIBC), Albumin globulin ratioA/G ratio), and complete blood count (CBC).
Results: Injection of 740Mbq99mTc-MIBI caused a significant increase in serum levels of AST (p= 0.001), ALT (p= 0.001), SI (p= 0.030), TIBC (p= 0.003) and A/G Ratio (p= 0.020). However, following radiotracer injection, a significant decrease was noted in the serum levels of TP (p= 0.002), Alb (p= 0.014), Glo(p= 0.002), ALP (p= 0.001), D.Bili (p= 0.003) and T.Bili (p= 0.000).
Conclusion: Due to increased usage of MPI, our data highlights the importance of monitoring the clinical and paraclinical effects of the procedure on vital organs and physiological pathways to reduce their adverse effects.

Keywords

  1. Alavi MS, Azarpira N, Mojallal M. Incidental finding of bilateral papillary thyroid carcinoma in a patient with primary hyperparathyroidism. Hell J Nucl Med. 2010;13:56-8. PubMed PMID: 20411173.
  2. Lee WH, Nguyen PK, Fleischmann D, Wu JC. DNA damage-associated biomarkers in studying individual sensitivity to low-dose radiation from cardiovascular imaging. Eur Heart J. 2016;37:3075-80. doi: 10.1093/eurheartj/ehw206. PubMed PMID: 27272147.
  3. Fazel R, Shaw LJ. Radiation exposure from radionuclide myocardial perfusion imaging: concerns and solutionsv. J Nucl Cardiol. 2011;18:562-5. doi: 10.1007/s12350-011-9403-y. PubMed PMID: 21638151.
  4. Helal N. Patient organs dose calculations in nuclear medicine. Int J Res Rev Appl Sci. 2012;11:153-61.
  5. Savi A, Gerundini P, Zoli P, Maffioli L, Compierchio A, Colombo F, et al. Biodistribution of Tc-99m methoxy-isobutyl-isonitrile (MIBI) in humans. Eur J Nucl Med. 1989;15:597-600. PubMed PMID: 2598955.
  6. Savelli G, Basile P, Andreoli M, Pizzocaro C, Kaiser SR, Zaniboni A. ImmunoPET in Neoplasms of Gastrointestinal Tract, Liver and Pancreas in the XXIst Century: Bridging the Gap Between Diagnosis and Therapy. Rev Recent Clin Trials. 2015;10:146-54. PubMed PMID: 25800243.
  7. Gates VL, Singh N, Lewandowski RJ, Spies S, Salem R. Intraarterial hepatic SPECT/CT imaging using 99mTc-macroaggregated albumin in preparation for radioembolization. J Nucl Med. 2015;56:1157-62.
  8. Bertagna F, Piccardo A, Dib B, Bertoli M, Fracassi F, Bosio G, et al. Multicentre study of 18F-FDG-PET/CT prostate incidental uptake. Japanese journal of radiology. 2015;33:538-46.
  9. Legou F, Chiaradia M, Baranes L, Pigneur F, Zegai B, Djabbari M, et al. Imaging strategies before beginning treatment of colorectal liver metastases. Diagnostic and interventional imaging. 2014;95:505-12.
  10. Tan TH, Lee BN, Hassan SZA. Diagnostic value of 68 Ga-DOTATATE PET/CT in liver metastases of neuroendocrine tumours of unknown origin. Nucl Med Mol Imaging (2010). 2014;48:212-5.
  11. Sen H, Tan YZ, Binnetoglu E, Asik M, Günes F, Erbag G, et al. Evaluation of liver perfusion in diabetic patients using 99mTc-sestamibiErhebung der Leberperfusion mittels 99mTc-Sestamibi bei Patienten mit Diabetes mellitus. Wiener klinische Wochenschrift. 2015;127:19-23.
  12. Siegel JA, Welsh JS. Does Imaging Technology Cause Cancer? Debunking the Linear No-Threshold Model of Radiation Carcinogenesis. Technol Cancer Res Treat. 2016;15:249-56. doi: 10.1177/1533034615578011. PubMed PMID: 25824269.
  13. Shahid S, Mahmood N, Chaudhry MN, Sheikh S, Ahmad N. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine. 2015;73:181-9.
  14. Brooks AL, Dauer LT. Advances in radiation biology: effect on nuclear medicine. Semin Nucl Med. 2014;44:179-86. doi: 10.1053/j.semnuclmed.2014.03.004. PubMed PMID: 24832582.
  15. Alavi M, Taeb S, Okhovat M, Atefi M, Negahdari F. Look Different: Effect of Radiation Hormesis on the Survival Rate of Immunosuppressed Mice. Journal of biomedical physics & engineering. 2016;6:139.-146.
  16. Bolus NE. Basic review of radiation biology and terminology. J Nucl Med Technol. 2001;29:67-73. PubMed PMID: 11376098.
  17. Soni S, Agrawal P, Kumar N, Mittal G, Nishad DK, Chaudhury NK, et al. Salivary biochemical markers as potential acute toxicity parameters for acute radiation injury: A study on small experimental animals. Hum Exp Toxicol. 2016;35:221-8. doi: 10.1177/0960327115579433. PubMed PMID: 25813962.
  18. Nwozo S, Okameme P, Oyinloye B. Potential of Piper guineense and Aframomum longiscapum to reduce radiation induced hepatic damage in male Wistar rats. Radiats Biol Radioecol. 2012;52:363-9.
  19. Li G, Wang J, Hu W, Zhang Z. Radiation-induced liver injury in three-dimensional conformal radiation therapy (3D-CRT) for postoperative or locoregional recurrent gastric cancer: risk factors and dose limitations. PLoS One. 2015;10:e0136288.
  20. Chi C, Tian R, Liu H, Wang H, Wei J, Guo J, et al. Follow-up study of abnormal biological indicators and gene expression in the peripheral blood of three accidentally exposed persons. J Radiat Res (Tokyo). 2013;54:840-51.
  21. Barshishat-Kupper M, Tipton AJ, McCart EA, McCue J, Mueller GP, Day RM. Effect of ionizing radiation on liver protein oxidation and metabolic function in C57BL/6J mice. Int J Radiat Biol. 2014;90:1169-78.
  22. Brinkhaus G, Lock JF, Malinowski M, Denecke T, Neuhaus P, Hamm B, et al. CT-guided high-dose-rate brachytherapy of liver tumours does not impair hepatic function and shows high overall safety and favourable survival rates. Ann Surg Oncol. 2014;21:4284-92.
  23. Yu JI, Park HC, Lim DH, Paik SW. Do Biliary Complications after Hypofractionated Radiation Therapy in Hepatocellular Carcinoma Matter? Cancer Res Treat. 2016;48:574-82. doi: 10.4143/crt.2015.076. PubMed PMID: 26194367; PubMed Central PMCID: PMC4843719.
  24. Lin Y-T, Huang C-C, Chyau C-C, Chen K-C, Peng RY. Sixteen years post radiotherapy of nasopharyngeal carcinoma elicited multi-dysfunction along PTX and chronic kidney disease with microcytic anemia. BMC Urol. 2014;14:19.
  25. Alavi M, Zal F, Zamani F, Kazemi M, Rasti M. Evaluation of a Number of Blood Biochemical Markers after Radioiodine Therapy in Papillary Thyroid Cancer Patients. Middle East J Cancer. 2017;8:77-82.