Document Type: Original Research


1 Medical Student, Shiraz University of Medical Sciences, Shiraz, Iran

2 Physiology Department, Fasa University of Medical Sciences, Fasa, Iran

3 Ionizing and Non-ionizing Radiation Protection Research Center (INIR- PRC), Shiraz University of Medical Sciences, Shiraz, Iran

4 Biostatistic Department, Medical sciences Shiraz University of Medical Sciences, Shiraz, Iran


Background: Electromagnetic fields (EMF) with different intensities are widely used at home, offices and public places.Today, there is a growing global concern about the effects of human exposure to EMFs. Epilepsy is one of the most common chronic neurological diseases, affecting 50 million people of all ages worldwide. We aimed to investigate the effect of exposure to Wi-Fi radiation on epileptic behavior of rats.
Materials and Methods: 147 male rats, weighing 200-250 g, were divided into seven groups; negative control (no intervention), sham 1(distilled water), positive control (Pentylentetrazol [PTZ]), intervention group 1 (PTZ + Wi-Fi “off”), sham 2 (distilled water + Wi-Fi “off”), sham 3 (distilled water + Wi-Fi “on”), and intervention group 2 (PTZ + Wi-Fi “on”). The rats were exposed to Wi-Fi for 2h at a distance of 30cm from a commercial Wi-Fi router. Convulsive behaviors of rats were monitored and scored based on the intensity and type by measuring latency/threshold time, number of convulsions, sum of scores and durations of seizure, and duration of score 6 seizure. Kruskal-Wallis and Mann-Whitney U-tests were used to analyze the data.
Results: Convulsion was observed in interventions Group 4 and Group 7, and positive control. The mean number of events, and sum of scores were significantly different in intervention 2 than other two groups. However, the differences in mean threshold, mean sum of durations and “ time to show convulsion with score 6 ” were not statistically significant (P>0.05).
Conclusion: Due to limitations of our study including the sample size, these findings should be interpreted with caution. In this study, exposure to 2.4 GHz Wi-Fi radiation showed significant beneficial effects on the epileptic behaviour of rats. More experiments are needed to verify if these exposures can be used as a therapeutic approach for amelioration of seizures in epilepsy.


  1. Foster KR, Moulder JE. Wi-Fi and health: review of current status of research. Health Phys. 2013;105:561-75. doi: 10.1097/HP.0b013e31829b49bb. PubMed PMID: 24162060.
  2. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318-25. doi: 10.1016/j.fertnstert.2008.08.022. PubMed PMID: 18804757.
  3. Wood AW. How dangerous are mobile phones, transmission masts, and electricity pylons? Arch Dis Child. 2006;91:361-6. doi: 10.1136/adc.2005.072561. PubMed PMID: 16551794; PubMed Central PMCID: PMC2065971.
  4. Sage C, Carpenter DO. Public health implications of wireless technologies. Pathophysiology. 2009;16:233-46. doi: 10.1016/j.pathophys.2009.01.011. PubMed PMID: 19285839.
  5. Avendano C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97:39-45 e2. doi: 10.1016/j.fertnstert.2011.10.012. PubMed PMID: 22112647.
  6. Jensh RP. Behavioral teratologic studies using microwave radiation: is there an increased risk from exposure to cellular phones and microwave ovens? Reprod Toxicol. 1997;11:601-11. PubMed PMID: 9241682.
  7. Panagopoulos DJ, Karabarbounis A, Margaritis LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 2002;298:95-102. PubMed PMID: 12379225.
  8. Singh P. Wireless radiation: a threat to human health. International Journal of Technical Research and Applications. 2013;1:13-9.
  9. Pall ML. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat. 2016;75:43-51.
  10. Group IS. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol. 2010;39:675-94. doi: 10.1093/ije/dyq079. PubMed PMID: 20483835.
  11. Frei P, Poulsen AH, Johansen C, Olsen JH, Steding-Jessen M, Schuz J. Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ. 2011;343:d6387. doi: 10.1136/bmj.d6387. PubMed PMID: 22016439; PubMed Central PMCID: PMC3197791.
  12. Ogawa K, Nabae K, Wang J, Wake K, Watanabe S, Kawabe M, et al. Effects of gestational exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular phones: Lack of embryotoxicity and teratogenicity in rats. Bioelectromagnetics. 2009;30:205-12. doi: 10.1002/bem.20456. PubMed PMID: 19194858.
  13. Takahashi S, Imai N, Nabae K, Wake K, Kawai H, Wang J, et al. Lack of adverse effects of whole-body exposure to a mobile telecommunication electromagnetic field on the rat fetus. Radiat Res. 2010;173:362-72. doi: 10.1667/RR1615.1. PubMed PMID: 20199221.
  14. Sambucci M, Laudisi F, Nasta F, Pinto R, Lodato R, Altavista P, et al. Prenatal exposure to non-ionizing radiation: effects of WiFi signals on pregnancy outcome, peripheral B-cell compartment and antibody production. Radiat Res. 2010;174:732-40. doi: 10.1667/RR2255.1. PubMed PMID: 21128797.
  15. Mortazavi S, Mosleh-Shirazi M, Tavassoli A, Taheri M, Mehdizadeh A, Namazi S, et al. Increased Radioresistance to Lethal Doses of Gamma Rays in Mice and Rats after Exposure to Microwave Radiation Emitted by a GSM Mobile Phone Simulator. Dose Response. 2013;11:281-92. doi: 10.2203/dose-response.12-010.Mortazavi. PubMed PMID: 23930107; PubMed Central PMCID: PMC3682203.
  16. aheri M, Mortazavi SM, Moradi M, Mansouri S, Nouri F, Mortazavi SA, et al. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation. J Biomed Phys Eng. 2015;5:115-20. PubMed PMID: 26396967; PubMed Central PMCID: PMC4576872.
  17. Mortazavi S, Shojaei-Fard M, Haghani M, Shokrpour N, Mortazavi S. Exposure to mobile phone radiation opens new horizons in Alzheimer’s disease treatment. J Biomed Phys Eng. 2013;3:109-12. PubMed PMID: 25505755; PubMed Central PMCID: PMC4204502.
  18. Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis. 2010;19:191-210. doi: 10.3233/JAD-2010-1228. PubMed PMID: 20061638.
  19. Banaceur S, Banasr S, Sakly M, Abdelmelek H. Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD). Behav Brain Res. 2013;240:197-201. doi: 10.1016/j.bbr.2012.11.021. PubMed PMID: 23195115.
  20. Park WH, Chae YJ, Soh KS, Lee BC, Pyo MY. Inhibition of pentylenetetrazole-induced seizure in mice by using a 4 Hz magnetic field: a comparative study with a 60 Hz magnetic field. Electromagn Biol Med. 2012;31:293-8. doi: 10.3109/15368378.2012.662191. PubMed PMID: 22676887.
  21. Ghazizadeh V, Naziroglu M. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 2014;29:787-99. doi: 10.1007/s11011-014-9549-9. PubMed PMID: 24792079.
  22. Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol. 2003;16:165-70. doi: 10.1097/01.wco.0000063766.15877.8e. PubMed PMID: 12644744.
  23. Cinar N, Sahin S, Erdinc OO. What is the impact of electromagnetic waves on epileptic seizures? Med Sci Monit Basic Res. 2013;19:141-5. doi: 10.12659/MSMBR.883907. PubMed PMID: 23676765; PubMed Central PMCID: PMC3659130.
  24. Coppola G, Arcieri S, D’Aniello A, Messana T, Verrotti A, Signoriello G, et al. Levetiracetam in submaximal subcutaneous pentylentetrazol-induced seizures in rats. Seizure. 2010;19:296-9. doi: 10.1016/j.seizure.2010.03.004. PubMed PMID: 20399683.
  25. Othman H, Ammari M, Rtibi K, Bensaid N, Sakly M, Abdelmelek H. Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices. Environ Toxicol Pharmacol. 2017;52:239-47. doi: 10.1016/j.etap.2017.04.016. PubMed PMID: 28458069.
  26. Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281-94.
  27. Demir T, Gulturk S, Demirkazik Canclar A, Durmus N. Investigation of the effects of magnetic field exposure on febrile seizure latency, seizure duration, and electroencephalographic recordings in a rat febrile convulsion model. Turk J Med Sci. 2014;44:295-304. PubMed PMID: 25536740.
  28. Keskil IS, Keskil ZA, Canseven AG, Seyhan N. No effect of 50 Hz magnetic field observed in a pilot study on pentylenetetrazol-induced seizures and mortality in mice. Epilepsy Res. 2001;44:27-32. PubMed PMID: 11255070.
  29. Canseven AG, Keskil ZA, Keskil S, Seyhan N. Pentylenetetrazol-induced seizures are not altered by pre- or post-drug exposure to a 50 Hz magnetic field. Int J Radiat Biol. 2007;83:231-5. PubMed PMID: 17575950.
  30. Ossenkopp KP, Cain DP. Inhibitory effects of powerline-frequency (60-Hz) magnetic fields on pentylenetetrazol-induced seizures and mortality in rats. Behav Brain Res. 1991;44:211-6. PubMed PMID: 1751012.
  31. Papageorgiou CC, Hountala CD, Maganioti AE, Kyprianou MA, Rabavilas AD, Papadimitriou GN, et al. Effects of wi-fi signals on the p300 component of event-related potentials during an auditory hayling task. J Integr Neurosci. 2011;10:189-202. doi: 10.1142/S0219635211002695. PubMed PMID: 2171413
  32. Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016;75:116-22. doi: 10.1016/j.jchemneu.2016.01.003. PubMed PMID: 26775760.
  33. Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Cav1-channel activity. J Cell Physiol. 2008;215:129-39.
  34. Naziroglu M, Ozkan FF, Hapil SR, Ghazizadeh V, Cig B. Epilepsy but not mobile phone frequency (900 MHz) induces apoptosis and calcium entry in hippocampus of epileptic rat: involvement of TRPV1 channels. J Membr Biol. 2015;248:83-91. doi: 10.1007/s00232-014-9744-y. PubMed PMID: 25381485.
  35. Patel M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med. 2004;37:1951-62. doi: 10.1016/j.freeradbiomed.2004.08.021. PubMed PMID: 15544915.
  36. Raus Balind S, Selakovic V, Radenovic L, Prolic Z, Janac B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One. 2014;9:e88921. doi: 10.1371/journal.pone.0088921. PubMed PMID: 24586442; PubMed Central PMCID: PMC3929496.