Document Type : Original Research

Authors

1 Department of Radiotherapy, King George Medical University, Lucknow, India

2 M.S. Patel Cancer Center, Shree Krishna Hospital and Research Centre, Karamsad, Gujarat, India

3 Department of Radiotherapy, Jaypee Hospital, Noida, Uttar Pradesh, India

4 Department of Radiotherapy, J.K.Cancer Hospital, Kanpur, Uttar Pradesh, India

5 Department of Radiation Oncology, Batra Hospital, New Delhi, India

Abstract

Aims: The aims of the present work are (1) to evaluate dose calculation accuracy of two commonly used algorithms for 15 MV small photon fields in a medium encompassing heterogeneity and (2) to compare them with measured results obtained from gafchromic film EBT2.
Materials and Methods: Authors employed kailwood (Pinus Wallichiana) to mimic lung. Briefly, seven Kailwood plates, each measuring 25x25 cm2 of varying thicknesses totaling 13 cm equivalent to the mean thickness of an adult human lung, were sandwiched between 5 cm tissue equivalent material from top and 10 cm below. Physical measurements were performed using Radiochromic film EBT2. The field sizes of 1x1, 2x2, 5x5 and 10x10 cm2 were selected at 100 cm SSD. Simulations were performed using EGSnrc/DOSRZnrc Monte Carlo code. The dose variation inside the inhomogeneity and near the interface was calculated using AAA & XVMC algorithm.
Results: Preliminary results show that there is large variation of dose inside inhomogeneity. The maximum variation of dose inside the inhomogeneity for 1x1 cm2 was found 40% by AAA and 4.5% by XVMC compared to measured/simulated results. For the field size of 2x2 cm2, these figures were 27% by AAA & 3.5% by XVMC. For 5x5 cm2 field size, the variation is small which becomes insignificant for larger fields.
Conclusion: The results presented in this work indicate that for smaller fields, XVMC algorithm gives more realistic prediction, while there is the need for caution on using AAA algorithm for dose calculations involving small area irradiation encompassing heterogeneities and low-density media.

Keywords

  1. Batho H. Lung corrections in cobalt 60 beam therapy. Journal of the Canadian Association of Radiologists. 1964;15:79.
  2. el-Khatib E, Battista JJ. Accuracy of lung dose calculations for large-field irradiation with 6-MV x rays. Med Phys. 1986;13:111-6. doi.org/10.1118/1.595953. PubMed PMID: 3951402.
  3. Kornelsen RO, Young ME. Changes in the dose-profile of a 10 MV x-ray beam within and beyond low density material. Med Phys. 1982;9:114-6. doi.org/10.1118/1.595059. PubMed PMID: 6804765.
  4. Lulu BA, Bjarngard BE. Batho’s correction factor combined with scatter summation. Med Phys. 1982;9:372-7. doi.org/10.1118/1.595174. PubMed PMID: 7110065.
  5. Mackie TR, el-Khatib E, Battista J, Scrimger J, Van Dyk J, Cunningham JR. Lung dose corrections for 6- and 15-MV x rays. Med Phys. 1985;12:327-32. doi.org/10.1118/1.595691. PubMed PMID: 3925308.
  6. el-Khatib EE, Evans M, Pla M, Cunningham JR. Evaluation of lung dose correction methods for photon irradiations of thorax phantoms. Int J Radiat Oncol Biol Phys. 1989;17:871-8. doi.org/10.1016/0360-3016(89)90081-3. PubMed PMID: 2777679.
  7. Mesbahi A, Thwaites DI, Reilly AJ. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for lung dose calculations. Reports of Practical Oncology & Radiotherapy. 2006;11:123-33. doi.org/10.1016/S1507-1367(06)71057-4.
  8. du Plessis FC, Willemse CA, Lotter MG, Goedhals L. Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models. Med Phys. 2001;28:582-9. doi.org/10.1118/1.1357223. PubMed PMID: 11339755.
  9. Papanikolaou N, Battista JJ, Boyer AL, Kappas C, Klein E, Mackie TR, et al. Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Task Group. 2004;65:1-142.
  10. Tillikainen L, Helminen H, Torsti T, Siljamaki S, Alakuijala J, Pyyry J, et al. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol. 2008;53:3821-39. doi.org/10.1088/0031-9155/53/14/008. PubMed PMID: 18583728.
  11. Gagne IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8:33-46. PubMed PMID: 17592451.
  12. Bragg CM, Conway J. Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning. Radiother Oncol. 2006;81:315-23. doi.org/10.1016/j.radonc.2006.10.020. PubMed PMID: 17125862.
  13. Stathakis S, Esquivel C, Quino LV, Myers P, Calvo O, Mavroidis P, et al. Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. Int J Med Phys Clin Radiat Oncol. 2012;1:78‑87.
  14. Kumar A, Sharma SD, Arya AK, Gupta S, Shrotriya D. Effect of low-density heterogeneities in telecobalt therapy and validation of dose calculation algorithm of a treatment planning system. J Med Phys. 2011;36:198-204. doi.org/10.4103/0971-6203.89967. PubMed PMID: 22228928. PubMed PMCID: 3249730.
  15. GafchromicVR E. Self-Developing Film for Radiotherapy Dosimetry. ISP White Paper. 2010.
  16. Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000;27:485-98. doi.org/10.1118/1.598917. PubMed PMID: 10757601.
  17. Kawrakow I, Rogers DWO. The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. Technical Report No. PIRS-701.National Research Council of Canada, Ottawa, Canada; 2006.
  18. Rogers D, Kawrakow I, Seuntjens J, Walters B, Mainegra-Hing E. NRC User Codes for EGSnrc. Ottawa (ON): National Research Council of Canada. 2003.
  19. Day M, Aird E. The equivalent field method for dose determinations in rectangular fields. BJR supplement/BIR. 1995;25:138-51.
  20. Mohan R, Chui C, Lidofsky L. Energy and angular distributions of photons from medical linear accelerators. Med Phys. 1985;12:592-7. doi.org/10.1118/1.595680. PubMed PMID: 4046993.
  21. ICRU. Stopping Powers for Electrons and Positrons. International Commission on Radiation Units and Measurements. ICRU report 37. 1984.
  22. Malamut C, Rogers DW, Bielajew AF. Calculation of water/air stopping-power ratios using EGS4 with explicit treatment of electron-positron differences. Med Phys. 1991;18:1222-8. doi.org/10.1118/1.596594. PubMed PMID: 1753907.
  23. Nahum AE. Water/air mass stopping power ratios for megavoltage photon and electron beams. Phys Med Biol. 1978;23:24-38. doi.org/10.1088/0031-9155/23/1/002. PubMed PMID: 416446.
  24. da Rosa LA, Cardoso SC, Campos LT, Alves VG, Batista DV, Facure A. Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry. J Appl Clin Med Phys. 2010;11:2947. PubMed PMID: 20160687.
  25. Duch MA, Carrasco P, Ginjaume M, Jornet N, Ortega X, Ribas M. Dose evaluation in lung-equivalent media in high-energy photon external radiotherapy. Radiat Prot Dosimetry. 2006;120:43-7. doi.org/10.1093/rpd/nci668. PubMed PMID: 16644942.
  26. Chetty IJ, Charland PM, Tyagi N, McShan DL, Fraass BA, Bielajew AF. Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media. Med Phys. 2003;30:563-73. doi.org/10.1118/1.1555671. PubMed PMID: 12722808