Document Type : Original Research

Authors

1 Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Department of Medical Physics and Biomedical EngineeringTehran University of Medical Sciences Tehran Iran

4 Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

5 Department of Radiology, Golestan Medical Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Introduction: Electrical impedance of tissues on low frequencies includes useful information about functional and structural changes in tissues. This property is used in Electrical Impedance Tomography (EIT) imaging modality for the detection of lesions in tissues.Objective: The goal of this article is to study changes in electrical impedance of tissues in the presence of gold nanoparticles.Materials and Methods: Spherical gold nanoparticles with size of 20-25 nm were synthesized with Turkevich method. Size distribution and shape of nanoparticles were characterized by transmission electron microscopy (TEM). Electrical impedance of two types of phantoms (chicken fat and muscle paste tissues) was measured by 4-electrode method with and without gold nanoparticles.Results: Results demonstrate a reduction in electrical impedance of tissues in the presence of gold nanoparticles. However, this reduction is not the same for fat and muscle tissues. Reductions in resistive impedance are  for fat and muscle tissues on the frequency of 1 KHz, respectively. A reduction in electrical impedance is accompanied by a rise in electrical conductance leading to increase in EIT signal.Conclusion: As signal enhancement is different for fat and muscle tissues; presence of gold nanoparticles could be used to improve EIT image contrast.

Keywords

  1. Faes TJ, van der Meij HA, de Munck JC, Heethaar RM. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas. 1999;20:R1-10. PubMed PMID: 10593226.
  2. Miklavčič D, Pavšelj N, Hart FX. Electric properties of tissues. Wiley encyclopedia of biomedical engineering. 2006.
  3. Borcea L. Electrical impedance tomography. Inverse problems. 2002;18:R99.
  4. Liu R, Liu J, Wang G, Ding H, editors. Minimally invasive electrical impedance tomography-promising way to decrease diagnostics uncertainty. Nano/Micro Engineered and Molecular Systems, 2006 NEMS’06 1st IEEE International Conference on; 2006: IEEE.
  5. Gong B, Krueger-Ziolek S, Moeller K, Schullcke B, Zhao Z. Electrical impedance tomography: functional lung imaging on its way to clinical practice? Expert Rev Respir Med. 2015;9:721-37. doi: 10.1586/17476348.2015.1103650. PubMed PMID: 26488464.
  6. Lundin S, Stenqvist O. Electrical impedance tomography: potentials and pitfalls. Curr Opin Crit Care. 2012;18:35-41. doi: 10.1097/MCC.0b013e32834eb462. PubMed PMID: 22201705.
  7. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113:1641-66. doi: 10.1021/cr200358s. PubMed PMID: 23210836; PubMed Central PMCID: PMC3878741.
  8. Riyahi-Alam N, Behrouzkia Z, Seifalian A, Haghgoo Jahromi S. Properties evaluation of a new MRI contrast agent based on Gd-loaded nanoparticles. Biol Trace Elem Res. 2010;137:324-34. doi: 10.1007/s12011-009-8587-3. PubMed PMID: 20049554.
  9. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (Lond). 2015;10:321-41. doi: 10.2217/nnm.14.171. PubMed PMID: 25600973.
  10. Xi D, Dong S, Meng X, Lu Q, Meng L, Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. Rsc Advances. 2012;2:12515-24.
  11. Zabihzadeh M, Arefian S. Tumor dose enhancement by nanoparticles during high dose rate (192)Ir brachytherapy. J Cancer Res Ther. 2015;11:752-9. doi: 10.4103/0973-1482.153668. PubMed PMID: 26881513.
  12. Zabihzadeh M, Moshirian T, Ghorbani M, Knaup C, Behrooz MA. A Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays. J Biomed Phys Eng. 2018;8:13-28. PubMed PMID: 29732337; PubMed Central PMCID: PMC5928303.
  13. Rezaei H, Zabihzadeh M, Ghorbani M, Goli Ahmadabad F, Mostaghimi H. Evaluation of dose enhancement in presence of gold nanoparticles in eye brachytherapy by (103)Pd source. Australas Phys Eng Sci Med. 2017;40:545-53. doi: 10.1007/s13246-017-0555-1. PubMed PMID: 28509080.
  14. Abdelhalim MA, Mady MM, Ghannam MM. Rheological and dielectric properties of different gold nanoparticle sizes. Lipids Health Dis. 2011;10:208. doi: 10.1186/1476-511X-10-208. PubMed PMID: 22078458; PubMed Central PMCID: PMC3231822.
  15. Callaghan MF, Lund T, Hashemzadeh P, Roitt IM, Bayford RH, editors. An investigation of the impedance properties of gold nanoparticles. Journal of Physics: Conference Series; 2010;224:012058.
  16. Khalafalla M, Mesli A, Widattallah H, Sellai A, Al-Harthi S, Al-Lawati HA, et al. Size-dependent conductivity dispersion of gold nanoparticle colloids in a microchip: contactless measurements. Journal of nanoparticle research. 2014;16:2546.
  17. Griffiths H. A phantom for electrical impedance tomography. Clin Phys Physiol Meas. 1988;9 Suppl A:15-20. PubMed PMID: 3240643.
  18. Lee KH, Kim YT, Oh TI, Woo EJ, editors. Complex conductivity spectra of seven materials and phantom design for EIT. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography; 2007: Springer.
  19. Bera TK, Nagaraju J. A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sensing and Imaging: An International Journal. 2011;12:95-116.
  20. Bera TK, Nagaraju J. Electrical impedance spectroscopic studies on broiler chicken tissue suitable for the development of practical phantoms in multifrequency EIT. Journal of Electrical Bioimpedance. 2011;2:48-63.
  21. Bera TK, Nagaraju J. Studying the resistivity imaging of chicken tissue phantoms with different current patterns in Electrical Impedance Tomography (EIT). Measurement. 2012;45:663-82.
  22. Dean D, Machado-Aranda D, Ramanathan T, Molina I, Sundararajan R, editors. Electrical properties of biological tissues-an impedance spectroscopy study. Electrical Insulation and Dielectric Phenomena, 2006 IEEE Conference on; 2006: IEEE.
  23. Okazaki K, Tangoku A, Morimoto T, Kotani R, Hattori K, Yasuno E, et al. Basic study of a diagnostic modality employing a new electrical impedance tomography (EIT) method for noninvasive measurement in localized tissues. J Med Invest. 2010;57:205-18. PubMed PMID: 20847519.
  24. Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng. 2014;2014:381251. doi: 10.1155/2014/381251. PubMed PMID: 27006932; PubMed Central PMCID: PMC4782691.
  25. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110:15700-7. doi: 10.1021/jp061667w. PubMed PMID: 16898714.
  26. Ali H, Karim S, Rafiq M, Maaz K, ur Rahman A, Nisar A, et al. Electrical conduction mechanism in ZnS nanoparticles. Journal of alloys and compounds. 2014;612:64-8.
  27. Pfeiffer C, Rehbock C, Huhn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, et al. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface. 2014;11:20130931. doi: 10.1098/rsif.2013.0931. PubMed PMID: 24759541; PubMed Central PMCID: PMC4032524.
  28. Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat. 2008;66:165-77. doi: 10.1016/j.elstat.2007.11.005. PubMed PMID: 19255614; PubMed Central PMCID: PMC2597841.