Document Type : Original Research

Authors

1 Department of Physi‌otherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

4 Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

5 Department of Medical Physics, School of Medicine, Shiraz University of Medicine Medicine, Shiraz, Iran

6 Department of Biostatistics, School of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran

7 Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Transcutaneous electrical nerve stimulation (TENS) is a noninvasive, inexpensive and safe analgesic technique used for relieving acute and chronic pain. However, despite all these advantages, there has been very little research into the therapeutic effects of TENS on brain activity. To the best of our knowledge, there is no evidence on the effect of high frequency TENS on the gamma band activity.  Objective: Investigation of the effect of high frequency TENS on the electroencephalographic (EEG) gamma band activity after inducing ischemic pain in healthy volunteers is considered.Methods: The modified version of Submaximal effort tourniquet test was carried out for inducing tonic pain in 15 right-handed healthy volunteers. The high frequency TENS (150µs in duration, frequency of 100 Hz) was applied for 20 minutes. Pain intensity was assessed using Visual Analog Scale (VAS) in two conditions (after-pain, after-TENS). EEG gamma band activity was recorded by a 19-channel EEG in three conditions (baseline, after-pain and after- TENS). The repeated measure ANOVA and paired-sample T- tests were used for data analysis.Results: EEG analysis showed an increase in gamma total power after inducing pain as compared to baseline and a decrease after the application of TENS (mean±SD: .043±.029 to .088±.042 to .038±.022 μV2 ).The analysis of VAS values demonstrated that the intensity of induced pain (mean±SD: 51.53±9.86) decreased after the application of TENS (mean±SD: 18.66±10.28). All these differences were statistically significant (p<.001).Conclusion: The results of this study revealed that the high frequency TENS can reduced the enhanced gamma band activity after the induction of tonic pain in healthy volunteers. This finding might help as a functional brain biomarker which could be useful for pain treatment, specifically for EEG-based neurofeedback approaches. 

Keywords

  1. Electrophysiology APTASoC. Electrotherapeutic terminology in physical therapy: American Physical Therapy Association; 2000.
  2. Moran F, Leonard T, Hawthorne S, Hughes CM, McCrum-Gardner E, Johnson MI, et al. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity. J Pain. 2011;12:929-35. doi.org/10.1016/j.jpain.2011.02.352. PubMed PMID: 21481649.
  3. Johnson MI, Tabasam G. An investigation into the analgesic effects of interferential currents and transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in otherwise pain-free volunteers. Phys Ther. 2003;83:208-23. PubMed PMID: 12620086.
  4. Robb K, Oxberry SG, Bennett MI, Johnson MI, Simpson KH, Searle RD. A cochrane systematic review of transcutaneous electrical nerve stimulation for cancer pain. J Pain Symptom Manage. 2009;37:746-53. doi.org/10.1016/j.jpainsymman.2008.03.022. PubMed PMID: 18790600.
  5. Kara M, Ozcakar L, Gokcay D, Ozcelik E, Yorubulut M, Guneri S, et al. Quantification of the effects of transcutaneous electrical nerve stimulation with functional magnetic resonance imaging: a double-blind randomized placebo-controlled study. Arch Phys Med Rehabil. 2010;91:1160-5. doi.org/10.1016/j.apmr.2010.04.023. PubMed PMID: 20684895.
  6. Silva JG, Santana CG, Inocencio KR, Orsini M, Machado S, Bergmann A. Electrocortical Analysis of Patients with Intercostobrachial Pain Treated with TENS after Breast Cancer Surgery. J Phys Ther Sci. 2014;26:349-53. doi.org/10.1589/jpts.26.349. PubMed PMID: 24707082. PubMed PMCID: 3976001.
  7. Timofeeva MA, Ar’kov VV, Andreev RA, Trushkin EV, Tonevitsky AG. Changes in parameters of laser-induced potentials after transcutaneous electroneurostimulation. Bull Exp Biol Med. 2011;150:479-80. doi.org/10.1007/s10517-011-1173-7. PubMed PMID: 22268048.
  8. Johnson MI, Walsh DM. Pain: continued uncertainty of TENS’ effectiveness for pain relief. Nat Rev Rheumatol. 2010;6:314-6. doi.org/10.1038/nrrheum.2010.77. PubMed PMID: 20520646.
  9. Hoshiyama M, Kakigi R. After-effect of transcutaneous electrical nerve stimulation (TENS) on pain-related evoked potentials and magnetic fields in normal subjects. Clin Neurophysiol. 2000;111:717-24. doi.org/10.1016/S1388-2457(99)00299-0. PubMed PMID: 10727923.
  10. Vassal F, Creac’h C, Convers P, Laurent B, Garcia-Larrea L, Peyron R. Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve stimulation (TENS): a placebo-controlled study in healthy volunteers. Clin Neurophysiol. 2013;124:1861-7. doi.org/10.1016/j.clinph.2013.04.001. PubMed PMID: 23639375.
  11. de Tommaso M, Fiore P, Camporeale A, Guido M, Libro G, Losito L, et al. High and low frequency transcutaneous electrical nerve stimulation inhibits nociceptive responses induced by CO 2 laser stimulation in humans. Neuroscience letters. 2003;342:17-20. doi.org/10.1016/S0304-3940(03)00219-2.
  12. Jensen MP, Hakimian S, Sherlin LH, Fregni F. New insights into neuromodulatory approaches for the treatment of pain. J Pain. 2008;9:193-9. doi.org/10.1016/j.jpain.2007.11.003. PubMed PMID: 18096437.
  13. Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception. Clin Neurophysiol. 2005;116:743-63. doi.org/10.1016/j.clinph.2004.11.016. PubMed PMID: 15792883.
  14. Williams JD, Gruzelier JH. Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. Int J Clin Exp Hypn. 2001;49:185-206. doi.org/10.1080/00207140108410070. PubMed PMID: 11430154.
  15. Ma J, Wang S, Raubertas R, Svetnik V. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials. J Neurosci Methods. 2010;190:248-57. doi.org/10.1016/j.jneumeth.2010.05.013. PubMed PMID: 20580744.
  16. Tinazzi M, Zarattini S, Valeriani M, Romito S, Farina S, Moretto G, et al. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation. Exp Brain Res. 2005;161:457-64. doi.org/10.1007/s00221-004-2091-y. PubMed PMID: 15551083.
  17. Terman G, Bonica J. Spinal mechanisms and their modulation. Bonica’s Management of Pain. 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2001. p. 73-152.
  18. Lorenz J, Garcia-Larrea L. Contribution of attentional and cognitive factors to laser evoked brain potentials. Neurophysiol Clin. 2003;33:293-301. doi.org/10.1016/j.neucli.2003.10.004. PubMed PMID: 14678843.
  19. Chen AC. EEG/MEG brain mapping of human pain: recent advances. International Congress Series; 2002: Elsevier.
  20. Chen AC. Human brain measures of clinical pain: a review. I. Topographic mappings. Pain. 1993;54:115-32. doi.org/10.1016/0304-3959(93)90200-9. PubMed PMID: 8233525.
  21. Posner J. A modified submaximal effort tourniquet test for evaluation of analgesics in healthy volunteers. Pain. 1984;19:143-51. doi.org/10.1016/0304-3959(84)90834-0. PubMed PMID: 6462726.
  22. Mima T, Oga T, Rothwell J, Satow T, Yamamoto J, Toma K, et al. Short-term high-frequency transcutaneous electrical nerve stimulation decreases human motor cortex excitability. Neurosci Lett. 2004;355:85-8. doi.org/10.1016/j.neulet.2003.10.045. PubMed PMID: 14729241.
  23. Bushnell M, Apkarian A. Representation of pain in the brain. Wall and Melzack’s Textbook of Pain. 5th edition. London: Elsevier; 2006. p. 107-124.
  24. Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13:500-5. doi.org/10.1016/S0959-4388(03)00090-4. PubMed PMID: 12965300.
  25. Mouraux A, Guerit J-M, Plaghki L. Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between A∂-and C-fibre afferent volleys. Clinical neurophysiology. 2003;114:710-22. doi.org/10.1016/S1388-2457(03)00027-0.
  26. Ploner M, Gross J, Timmermann L, Pollok B, Schnitzler A. Pain suppresses spontaneous brain rhythms. Cereb Cortex. 2006;16:537-40. doi.org/10.1093/cercor/bhj001. PubMed PMID: 16033927.
  27. Bromm B, Lorenz J. Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol. 1998;107:227-53. doi.org/10.1016/S0013-4694(98)00075-3. PubMed PMID: 9872441.
  28. Constant I, Sabourdin N. The EEG signal: a window on the cortical brain activity. Paediatr Anaesth. 2012;22:539-52. doi.org/10.1111/j.1460-9592.2012.03883.x. PubMed PMID: 22594406.
  29. Martinovic J, Busch NA. High frequency oscillations as a correlate of visual perception. Int J Psychophysiol. 2011;79:32-8. doi.org/10.1016/j.ijpsycho.2010.07.004. PubMed PMID: 20654659.
  30. Valentini E, Betti V, Hu L, Aglioti SM. Hypnotic modulation of pain perception and of brain activity triggered by nociceptive laser stimuli. Cortex. 2013;49:446-62. doi.org/10.1016/j.cortex.2012.02.005. PubMed PMID: 22464451.
  31. Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. Gamma-band oscillations in the primary somatosensory cortex--a direct and obligatory correlate of subjective pain intensity. J Neurosci. 2012;32:7429-38. doi.org/10.1523/JNEUROSCI.5877-11.2012. PubMed PMID: 22649223.
  32. Chen AC, Herrmann CS. Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects. Neurosci Lett. 2001;297:183-6. doi.org/10.1016/S0304-3940(00)01696-7. PubMed PMID: 11137758.
  33. Croft RJ, Williams JD, Haenschel C, Gruzelier JH. Pain perception, hypnosis and 40 Hz oscillations. Int J Psychophysiol. 2002;46:101-8. doi.org/10.1016/S0167-8760(02)00118-6. PubMed PMID: 12433387.
  34. Ohara S, Crone NE, Weiss N, Lenz FA. Analysis of synchrony demonstrates ‘pain networks’ defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain. 2006;123:244-53. doi.org/10.1016/j.pain.2006.02.012. PubMed PMID: 16563627.
  35. Nir RR, Sinai A, Moont R, Harari E, Yarnitsky D. Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest. Clin Neurophysiol. 2012;123:605-12. doi.org/10.1016/j.clinph.2011.08.006. PubMed PMID: 21889398.
  36. Bae YH, Lee SM. Analgesic effects of transcutaneous electrical nerve stimulation and interferential current on experimental ischemic pain models: frequencies of 50 hz and 100 hz. J Phys Ther Sci. 2014;26:1945-8. doi.org/10.1589/jpts.26.1945. PubMed PMID: 25540504. PubMed PMCID: 4273064.
  37. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. N Engl J Med. 1995;333:325-6. doi.org/10.1056/NEJM199508033330521. PubMed PMID: 7596392.
  38. Hasan S. Comparative Study: Analgesic effect of Al-TENS in variation of treatment time on experimentally induced ischaemic pain in healthy young adult. Indian Journal of Physiotherapy and Occupational Therapy. 2013;7:250. doi.org/10.5958/j.0973-5674.7.2.051.
  39. Neal MJ, Murray BR. The analgesic effect of anaesthetic mixtures. The effect of nitrous oxide with trichlorethylene or halothane on experimental ischaemic pain. Guys Hosp Rep. 1966;115:19-26. PubMed PMID: 5904624.
  40. Sacchetti G, Lampugnani R, Battistini C, Mandelli V. Response of pathological ischaemic muscle pain to analgesics. Br J Clin Pharmacol. 1980;9:165-9. doi.org/10.1111/j.1365-2125.1980.tb05828.x. PubMed PMID: 7356905. PubMed PMCID: 1429853.
  41. Handwerker HO, Kobal G. Psychophysiology of experimentally induced pain. Physiol Rev. 1993;73:639-71. doi.org/10.1152/physrev.1993.73.3.639. PubMed PMID: 8332641.
  42. Moore PA, Duncan GH, Scott DS, Gregg JM, Ghia JN. The submaximal effort tourniquet test: its use in evaluating experimental and chronic pain. Pain. 1979;6:375-82. doi.org/10.1016/0304-3959(79)90055-1. PubMed PMID: 460938.
  43. Chen CC, Johnson MI. Differential frequency effects of strong nonpainful transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in healthy human participants. Clin J Pain. 2011;27:434-41. doi.org/10.1097/AJP.0b013e318208c926. PubMed PMID: 21415722.
  44. Johnson MI, Tabasam G. A single-blind placebo-controlled investigation into the analgesic effects of interferential currents on experimentally induced ischaemic pain in healthy subjects. Clin Physiol Funct Imaging. 2002;22:187-96. doi.org/10.1046/j.1475-097X.2002.00416.x. PubMed PMID: 12076344.
  45. Droste C, Greenlee MW. Two separate components of pain produced by the submaximal effort tourniquet technique. Pain. 1985;23:95-6. doi.org/10.1016/0304-3959(85)90234-9. PubMed PMID: 4058930.
  46. Pertovaara A, Nurmikko T, Pontinen PJ. Two separate components of pain produced by the submaximal effort tourniquet test. Pain. 1984;20:53-8. doi.org/10.1016/0304-3959(84)90810-8. PubMed PMID: 6493789.
  47. Reinert A, Treede R, Bromm B. The pain inhibiting pain effect: an electrophysiological study in humans. Brain Res. 2000;862:103-10. doi.org/10.1016/S0006-8993(00)02077-1. PubMed PMID: 10799674.
  48. Guo-Sheng Y, Jiang W, Bin D, Xi-Le W, Chun-Xiao H. Modulation of electroencephalograph activity by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis. Chinese Physics B. 2013;22:028703. doi.org/10.1088/1674-1056/22/2/028703.
  49. Chang PF, Arendt-Nielsen L, Graven-Nielsen T, Chen AC. Psychophysical and EEG responses to repeated experimental muscle pain in humans: pain intensity encodes EEG activity. Brain Res Bull. 2003;59:533-43. doi.org/10.1016/S0361-9230(02)00950-4. PubMed PMID: 12576151.
  50. Bertrand O, Tallon-Baudry C. Oscillatory gamma activity in humans: a possible role for object representation. Int J Psychophysiol. 2000;38:211-23. doi.org/10.1016/S0167-8760(00)00166-5. PubMed PMID: 11102663.
  51. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci. 1999;3:151-62. doi.org/10.1016/S1364-6613(99)01299-1. PubMed PMID: 10322469.
  52. Kaiser J, Hertrich I, Ackermann H, Lutzenberger W. Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. Neuroimage. 2006;30:1376-82. doi.org/10.1016/j.neuroimage.2005.10.042. PubMed PMID: 16364660.
  53. Kaiser J, Lutzenberger W. Induced gamma-band activity and human brain function. Neuroscientist. 2003;9:475-84. doi.org/10.1177/1073858403259137. PubMed PMID: 14678580.
  54. Burgess AP, Ali L. Functional connectivity of gamma EEG activity is modulated at low frequency during conscious recollection. Int J Psychophysiol. 2002;46:91-100. doi.org/10.1016/S0167-8760(02)00108-3. PubMed PMID: 12433386.
  55. Shibata T, Shimoyama I, Ito T, Abla D, Iwasa H, Koseki K, et al. Attention changes the peak latency of the visual gamma-band oscillation of the EEG. Neuroreport. 1999;10:1167-70. doi.org/10.1097/00001756-199904260-00002. PubMed PMID: 10363918.
  56. Sokolov A, Lutzenberger W, Pavlova M, Preissl H, Braun C, Birbaumer N. Gamma-band MEG activity to coherent motion depends on task-driven attention. Neuroreport. 1999;10:1997-2000. doi.org/10.1097/00001756-199907130-00001. PubMed PMID: 10424663.
  57. De Pascalis V, Cacace I, Massicolle F. Perception and modulation of pain in waking and hypnosis: functional significance of phase-ordered gamma oscillations. Pain. 2004;112:27-36. doi.org/10.1016/j.pain.2004.07.003. PubMed PMID: 15494182.
  58. De Pascalis V, Cacace I. Pain perception, obstructive imagery and phase-ordered gamma oscillations. Int J Psychophysiol. 2005;56:157-69. doi.org/10.1016/j.ijpsycho.2004.11.004. PubMed PMID: 15804450.
  59. Hauck M, Lorenz J, Engel AK. Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J Neurosci. 2007;27:9270-7. doi.org/10.1523/JNEUROSCI.2283-07.2007. PubMed PMID: 17728441.
  60. Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007;5:e133. doi.org/10.1371/journal.pbio.0050133. PubMed PMID: 17456008. PubMed PMCID: 1854914.
  61. Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. Top-down and bottom-up modulation of pain-induced oscillations. Front Hum Neurosci. 2015;9:375. doi.org/10.3389/fnhum.2015.00375. PubMed PMID: 26190991. PubMed PMCID: 4488623.
  62. Schulz E, May ES, Postorino M, Tiemann L, Nickel MM, Witkovsky V, et al. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cereb Cortex. 2015;25:4407-14. doi.org/10.1093/cercor/bhv043. PubMed PMID: 25754338. PubMed PMCID: 4816790.
  63. Jensen MP, Sherlin LH, Askew RL, Fregni F, Witkop G, Gianas A, et al. Effects of non-pharmacological pain treatments on brain states. Clin Neurophysiol. 2013;124:2016-24. doi.org/10.1016/j.clinph.2013.04.009. PubMed PMID: 23706958. PubMed PMCID: 3759647.
  64. Farrar JT, Young JP, Jr., LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149-58. doi.org/10.1016/S0304-3959(01)00349-9. PubMed PMID: 11690728.
  65. Dworkin RH, Turk DC, Wyrwich KW, Beaton D, Cleeland CS, Farrar JT, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain. 2008;9:105-21. doi.org/10.1016/j.jpain.2007.09.005. PubMed PMID: 18055266.
  66. Maeda Y, Lisi TL, Vance CG, Sluka KA. Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res. 2007;1136:43-50. doi.org/10.1016/j.brainres.2006.11.061. PubMed PMID: 17234163. PubMed PMCID: 2746639.
  67. Sluka KA, Vance CG, Lisi TL. High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. J Neurochem. 2005;95:1794-801. doi.org/10.1111/j.1471-4159.2005.03511.x. PubMed PMID: 16236028.
  68. Leonard G, Goffaux P, Marchand S. Deciphering the role of endogenous opioids in high-frequency TENS using low and high doses of naloxone. Pain. 2010;151:215-9. doi.org/10.1016/j.pain.2010.07.012. PubMed PMID: 20728275.
  69. DeSantana J, Sluka K, editors. Antinociceptive effect of transcutaneous electric nerve stimulation (TENS) is mediated by ventrolateral periaqueductal grey (vlPAG). XII World Congress in Pain; 2008.
  70. DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep. 2008;10:492-9. doi.org/10.1007/s11926-008-0080-z. PubMed PMID: 19007541. PubMed PMCID: 2746624.