Document Type : Original Research

Authors

1 PhD Candidate, Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Assistant Professor, Department of Basic Sciences, Faculty of Health Sciences, Mazandaran University of Medical Sciences, Sari, Iran

3 Associate Professor, Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

4 Associate Professor, Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Background: Estimating dosimetric parameters for small fields under non-reference conditions leads to significant errors if done based on conventional protocols used for large fields in reference conditions. Hence, further correction factors have been introduced to take into account the influence of spectral quality changes when various detectors are used in non-reference conditions at different depths and field sizes.
Objective: Determining correction factors (KNR and KNCSF) recommended recently for small field dosimetry formalism by American Association of Physicists in Medicine (AAPM) for different detectors at 6 and 18 MV photon beams.
Methods: EGSnrc Monte Carlo code was used to calculate the doses measured with different detectors located in a slab phantom and the recommended KNR and KNCSF correction factors for various circular small field sizes ranging from 5-30 mm diameters. KNR and KNCSF correction factors were determined for different active detectors (a pinpoint chamber, EDP-20 and EDP-10 diodes) in a homogeneous phantom irradiated to 6 and 18 MV photon beams of a Varian linac (2100C/D).
Results: KNR correction factor estimated for the highest small circular field size of 30 mm diameter for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.993, 1.020 and 1.054; and 0.992, 1.054 and 1.005 for the 6 and 18 MV beams, respectively. The KNCSF correction factor estimated for the lowest circular field size of 5 mm for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.994, 1.023, and 1.040; and 1.000, 1.014, and 1.022 for the 6 and 18 MV photon beams, respectively.
Conclusion: Comparing the results obtained for the detectors used in this study reveals that the unshielded diodes (EDP-20 and EDP-10) can confidently be recommended for small field dosimetry as their correction factors (KNR and KNCSF) was close to 1.0 for all small field sizes investigated and are mainly independent from the electron beam spot size.

Keywords

  1. Duggan DM, Coffey CW, 2nd. Small photon field dosimetry for stereotactic radiosurgery. Med Dosim. 1998;23:153-9. doi.org/10.1016/S0958-3947(98)00013-2. PubMed PMID: 9783268.
  2. Ding GX, Duggan DM, Coffey CW. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods. Phys Med Biol. 2006;51:2549-66. doi.org/10.1088/0031-9155/51/10/013. PubMed PMID: 16675869.
  3. Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Medical physics. 2008;35:206-15. doi.org/10.1118/1.2815356.
  4. Czarnecki D, Zink K. Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields. Phys Med Biol. 2013;58:2431-44. doi.org/10.1088/0031-9155/58/8/2431. PubMed PMID: 23514734.
  5. Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, et al. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA TRS. 2000.
  6. Almond PR, Biggs PJ, Coursey B, Hanson W, Huq MS, Nath R, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Medical physics. 1999;26:1847-70. doi.org/10.1118/1.598691.
  7. Kawrakow I, Rogers DW, Walters BR. Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys. 2004;31:2883-98. doi.org/10.1118/1.1788912. PubMed PMID: 15543798.
  8. Chofor N, Harder D, Willborn K, Ruhmann A, Poppe B. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter. Z Med Phys. 2011;21:183-97. doi.org/10.1016/j.zemedi.2011.02.002. PubMed PMID: 21530198.
  9. Alfonso R, Andreo P, Capote R, Huq MS, Kilby W, Kjall P, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35:5179-86. doi.org/10.1118/1.3005481. PubMed PMID: 19070252.
  10. Kawrakow I, Rogers DW, Walters BR. Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys. 2004;31:2883-98. doi.org/10.1118/1.1788912. PubMed PMID: 15543798.
  11. American Assiciation of Medical Physicists Task Group 155 report: Small fields and non-equilibrium condition photon beam dosimetry, AAPM, 2012. (Pre-released version of TG155 AAPM report, accessed via private communication). Available from: http://www.aapm.org/meetings/ amos2/pdf/59-17153-34508-631. pdf.
  12. Wulff J, Heverhagen JT, Karle H, Zink K. Investigation of correction factors for non-reference conditions in ion chamber photon dosimetry with Monte-Carlo simulations. Z Med Phys. 2010;20:25-33. doi.org/10.1016/j.zemedi.2009.09.003. PubMed PMID: 20211423.
  13. Aspradakis M, Byrne J, Palmans H, Conway J, Rosser K, Warrington A, et al. IPEM report 103:’Small Field MV Photon Dosimetry’. 2010, York, UK. Institute of Physics and Engineering in Medicine (IPEM). 2010;42;42026432.
  14. Ding GX, Duggan DM, Coffey CW. A theoretical approach for non-equilibrium radiation dosimetry. Phys Med Biol. 2008;53:3493-9. doi.org/10.1088/0031-9155/53/13/006. PubMed PMID: 18552420.
  15. Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22:503-24. doi.org/10.1118/1.597552. PubMed PMID: 7643786.
  16. Kawrakow I, Rogers D. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. 2000.
  17. Kawrakow I, Mainegra-Hing E, Tessier F, Walters B. The EGSnrc C++ class library. NRC Report PIRS-898 (rev A). 2009.
  18. Rogers D, Kawrakow I, Seuntjens J, Walters B, Mainegra-Hing E. NRC user codes for EGSnrc. NRCC Report PIRS-702 (Rev. B). 2003.
  19. In: German Institute of Standards, DIN 6800-2. Procedures of dosimetry with probe-type detectors for photon and electron radiation – Part 2: Dosimetry of high-energy photon and electron radiation with ionization chambers. 2008. Available from: http://www.sis.se/metrologi-och-m%C3%A4tning-fysikaliska-fenomen/str%C3%A5lningsm%C3%A4tning/din-6800-2.
  20. In: German Institute of Standards, DIN 6800-5. Procedures of dosimetry with probe-type detectors for photon and electron radiation-Part 5: TLD dosimetry. 2005. Available from: http://www.din.de/en/getting-involved/standards-committees/nar/standards/wdc-beuth:din21:76603404.
  21. Araki F. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry. Med Phys. 2008;35:4033-40. doi.org/10.1118/1.2968102. PubMed PMID: 18841855.
  22. Zink K, Wulff J. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry. Phys Med Biol. 2012;57:1831-54. doi.org/10.1088/0031-9155/57/7/1831. PubMed PMID: 22411097.
  23. Yin Z, Hugtenburg RP, Beddoe AH. Response of silicon diode dosemeters to scattered radiation from megavoltage photon beams. Radiat Prot Dosimetry. 2002;101:415-8. doi.org/10.1093/oxfordjournals.rpd.a006014. PubMed PMID: 12382780.
  24. Eklund K, Ahnesjo A. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields. Med Phys. 2010;37:6055-60. doi.org/10.1118/1.3501316. PubMed PMID: 21158317.
  25. Edwards CR, Mountford PJ, Green S, Palethorpe JE, Moloney AJ. The low energy X-ray response of the LiF:Mg:Cu:P thermoluminescent dosemeter: a comparison with LiF:Mg:Ti. Br J Radiol. 2005;78:543-7. doi.org/10.1259/bjr/73133162. PubMed PMID: 15900061.
  26. Muir BR, McEwen MR, Rogers DW. Measured and Monte Carlo calculated K(Q) factors: accuracy and comparison. Med Phys. 2011;38:4600-9. doi.org/10.1118/1.3600697. PubMed PMID: 21928633.
  27. Hultqvist M, Fernandez-Varea JM, Izewska J. Monte Carlo simulation of correction factors for IAEA TLD holders. Phys Med Biol. 2010;55:N161-6. doi.org/10.1088/0031-9155/55/6/N03.
  28. Konnai A, Nariyama N, Ohnishi S, Odano N. Energy response of LiF and Mg2SiO4 TLDs to 10-150 keV monoenergetic photons. Radiat Prot Dosimetry. 2005;115:334-6. doi.org/10.1093/rpd/nci166. PubMed PMID: 16381741.
  29. Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI. Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors. Med Phys. 2011;38:6592-602. doi.org/10.1118/1.3658572. PubMed PMID: 22149841.
  30. da Rosa LA, Cardoso SC, Campos LT, Alves VG, Batista DV, Facure A. Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry. J Appl Clin Med Phys. 2010;11:2947. PubMed PMID: 20160687.
  31. Scott AJ, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35:4671-84. doi.org/10.1118/1.2975223. PubMed PMID: 18975713.
  32. Yarahmadi M, Allahverdi M, Nedaie HA, Asnaashari K, Vaezzadeh SA, Sauer OA. Improvement of the penumbra for small radiosurgical fields using flattening filter free low megavoltage beams. Z Med Phys. 2013;23:291-9. doi.org/10.1016/j.zemedi.2013.03.011. PubMed PMID: 23669174.
  33. Scarboro SB, Followill DS, Howell RM, Kry SF. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Med Phys. 2011;38:2619-28. doi.org/10.1118/1.3575419. PubMed PMID: 21776799.
  34. Dieterich S, Sherouse GW. Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors. Med Phys. 2011;38:4166-73. doi.org/10.1118/1.3592647. PubMed PMID: 21859018.
  35. Palmans H. Determination of the beam quality index of high-energy photon beams under nonstandard reference conditions. Med Phys. 2012;39:5513-9. doi.org/10.1118/1.4745565. PubMed PMID: 22957618.
  36. Scott AJ, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35:4671-84. doi.org/10.1118/1.2975223. PubMed PMID: 18975713.
  37. Sauer OA, Wilbert J. Functional representation of tissue phantom ratios for photon fields. Med Phys. 2009;36:5444-50. doi.org/10.1118/1.3250867. PubMed PMID: 20095257.