Document Type : Original Research
Authors
1 Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Bioengineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Biomedical Engineering and Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract
Introduction: Automatic and accurate arterial input function (AIF) selection has an essential role for quantification of cerebral perfusion hemodynamic parameters using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). The purpose of this study is to develop an optimal automatic method for arterial input function determination in DSC-MRI of glioma brain tumors by using a new preprocessing method.
Material and Methods: For this study, DSC-MR images of 43 patients with glioma brain tumors were retrieved retrospectively. Our proposed AIF selection framework consisted an effcient pre-processing step, through which non-arterial curves such as tumorous, tissue, noisy and partial-volume affected curves were excluded, followed by AIF selection through agglomerative hierarchical (AH) clustering method. The performance of automatic AIF clustering was compared with manual AIF selection performed by an experienced radiologist, based on curve shape parameters, i.e. maximum peak (MP), full-width-at-half-maximum (FWHM), M (=MP/ (TTP × FWHM)) and root mean square error (RMSE).
Results: Mean values of AIFs shape parameters were compared with those derived from manually selected AIFs by two-tailed paired t-test. The results showed statistically insignificant differences in MP, FWHM, and M parameters and lower RMSE, approving the resemblance of the selected AIF with the gold standard. The intraclass correlation coefficient and coefficients of variation percent showed a better agreement between manual AIF and our proposed AIF selection than previously proposed methods.
Conclusion: The results of current work suggest that by using efficient preprocessing steps, the accuracy of automatic AIF selection could be improved and this method appears promising for efficient and accurate clinical applications.
Keywords
- Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab. 2010;30:1066-78. doi: 10.1038/jcbfm.2010.4. PubMed PMID: 20087370; PubMed Central PMCID: PMC2949177.
- Shiroishi MS, Castellazzi G, Boxerman JL, D’Amore F, Essig M, Nguyen TB, et al. Principles of T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging. 2015;41:296-313. doi: 10.1002/jmri.24648. PubMed PMID: 24817252.
- Hauser T, Schonknecht P, Thomann PA, Gerigk L, Schroder J, Henze R, et al. Regional cerebral perfusion alterations in patients with mild cognitive impairment and Alzheimer disease using dynamic susceptibility contrast MRI. Acad Radiol. 2013;20:705-11. doi: 10.1016/j.acra.2013.01.020. PubMed PMID: 23664398.
- Schmainda KM, Zhang Z, Prah M, Snyder BS, Gilbert MR, Sorensen AG, et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol. 2015;17:1148-56. doi: 10.1093/neuonc/nou364. PubMed PMID: 25646027; PubMed Central PMCID: PMC4490871.
- Kennan RP, Jäger HR. T2-and T2*-w DCE-MRI: blood perfusion and volume estimation using bolus tracking. Quantitative MRI of the Brain. 2003:365-412.
- Essig M, Nguyen TB, Shiroishi MS, Saake M, Provenzale JM, Enterline DS, et al. Perfusion MRI: the five most frequently asked clinical questions. American Journal of Roentgenology. 2013;201:W495-W510.
- Peruzzo D, Bertoldo A, Zanderigo F, Cobelli C. Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Comput Methods Programs Biomed. 2011;104:e148-57. doi: 10.1016/j.cmpb.2011.02.012. PubMed PMID: 21458099.
- Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging. 2001;13:797-806. PubMed PMID: 11329204.
- Bleeker EJ, van Osch MJ, Connelly A, van Buchem MA, Webb AG, Calamante F. New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med. 2011;65:448-56. doi: 10.1002/mrm.22599. PubMed PMID: 21264935.
- Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med. 2006;55:524-31. doi: 10.1002/mrm.20759. PubMed PMID: 16453314.
- Yin J, Yang J, Guo Q. Evaluating the feasibility of an agglomerative hierarchy clustering algorithm for the automatic detection of the arterial input function using DSC-MRI. PLoS One. 2014;9:e100308. doi: 10.1371/journal.pone.0100308. PubMed PMID: 24932638; PubMed Central PMCID: PMC4059756.
- Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045-57. doi: 10.1007/s10278-013-9622-7. PubMed PMID: 23884657; PubMed Central PMCID: PMC3824915.
- Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715-25. PubMed PMID: 8916022.
- Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, et al. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med. 1990;14:538-46. PubMed PMID: 2355835.
- Yin J, Sun H, Yang J, Guo Q. Comparison of K-means and fuzzy c-means algorithm performance for automated determination of the arterial input function. PLoS One. 2014;9:e85884. doi: 10.1371/journal.pone.0085884. PubMed PMID: 24503700; PubMed Central PMCID: PMC3913570.
- Chan AA, Nelson SJ. Simplified gamma-variate fitting of perfusion curves. In Biomedical imaging: nano to macro, 2004. IEEE International Symposium on, pp. 1067-1070. IEEE, 2004.
- Freire L, Roche A, Mangin JF. What is the best similarity measure for motion correction in fMRI time series? IEEE Trans Med Imaging. 2002;21:470-84. doi: 10.1109/TMI.2002.1009383. PubMed PMID: 12071618.
- Freire L, Mangin JF. Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage. 2001;14:709-22. doi: 10.1006/nimg.2001.0869. PubMed PMID: 11506543.
- Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A. Automatic vessel removal in gliomas from dynamic susceptibility contrast imaging. Magn Reson Med. 2009;61:1210-7. doi: 10.1002/mrm.21944. PubMed PMID: 19253390.
- Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc. 2013;74:1-32. doi: 10.1016/j.pnmrs.2013.04.002. PubMed PMID: 24083460.
- Ellinger R, Kremser C, Schocke MF, Kolbitsch C, Griebel J, Felber SR, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr. 2000;24:942-8. PubMed PMID: 11105716.
- Yin J, Sun H, Yang J, Guo Q. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging. 2015;41:1071-8. doi: 10.1002/jmri.24642. PubMed PMID: 24753102.
- Yin J, Yang J, Guo Q. Automatic determination of the arterial input function in dynamic susceptibility contrast MRI: comparison of different reproducible clustering algorithms. Neuroradiology. 2015;57:535-43. doi: 10.1007/s00234-015-1493-9. PubMed PMID: 25633539; PubMed Central PMCID: PMC4412433.
- Carroll TJ, Rowley HA, Haughton VM. Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology. 2003;227:593-600.
- Law M, Young R, Babb J, Rad M, Sasaki T, Zagzag D, et al. Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2006;27:1975-82. PubMed PMID: 17032878.