Document Type : Short Communication


1 MVLS College, The University of Glasgow, Glasgow, Scotland, UK

2 Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Pediatric, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran

5 Department of Nutrition Sciences, School of Nutrition and Food Sciences, Larestan University of Medical Sciences, Larestan, Iran

6 Department of Anesthesiology, School of Nursing & Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran

7 Department of Computer Engineering, Sharif University, Tehran, Iran

8 Student Research Committee, School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran

9 Department of Speech Pathology, School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran

10 Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran

11 Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

12 Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran


Previous research has shown that children are more vulnerable to the adverse effects of radiofrequency electromagnetic fields (RF-EMFs) and blue light emitted from digital screens compared to healthy adults. This paper presents the findings of a cross-sectional study conducted in Yasuj, Iran, to investigate the screen time habits of children and adolescents and its potential impact on their health. A total of 63 participants, including 44 boys and 19 girls, were randomly selected for the study. The results showed that the average daily screen time for the children was 87.38 minutes, with a standard deviation of 49.58. When examining the specific purposes of screen time, it was found that the children spent an average of 17.54 minutes per day on screens for school assignments, 70 minutes per day for recreational purposes, and 23.41 minutes per day for contacting family, friends, and relatives. Our study highlights that a significant portion of the children’s screen time was allocated to recreational activities. We observed some differences in screen time between girls and boys. Boys had a slightly higher overall daily screen time, primarily driven by more recreational screen time. However, girls spent slightly more time on screens for school assignments. The screen time for social interactions was similar for both genders. Our findings on the cognitive performance of children with different levels of screen time will be published in a separate paper.


Seyed Alireza Mortazavi (Google Scholar)

Sahar Mohammadi (Google Scholar)


  1. Morgan LL, Miller AB, Sasco A, Davis DL. Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (review). Int J Oncol. 2015;46(5):1865-71. doi: 10.3892/ijo.2015.2908. PubMed PMID: 25738972.
  2. Sharma A, Sharma S, Shrivastava S, Singhal PK, Shukla S. Mobile phone induced cognitive and neurochemical J Chem Neuroanat. 2019;102:101684. doi: 10.1016/j.jchemneu.2019.101684. PubMed PMID: 31553920.
  3. Magiera A, Solecka J. Mobile telephony and its effects on human health. Rocz Panstw Zakl Hig. 2019;70(3):225-34. doi: 10.32394/rpzh.2019.0073. PubMed PMID: 31515981.
  4. Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health. 2019;7:223. doi: 10.3389/fpubh.2019.00223. PubMed PMID: 31457001. PubMed PMCID: PMC6701402.
  5. Hardell L, Carlberg M, Hedendahl LK. Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report. Oncol Lett. 2018;15(5):7871-83. doi: 10.3892/ol.2018.8285. PubMed PMID: 29725476. PubMed PMCID: PMC5920374.
  6. Koppel T, Ahonen M, Carlberg M, Hedendahl LK, Hardell L. Radiofrequency radiation from nearby mobile phone base stations-a case comparison of one low and one high exposure apartment. Oncol Lett. 2019;18(5):5383-91. doi: 10.3892/ol.2019.10899. PubMed PMID: 31612047. PubMed PMCID: PMC6781513.
  7. Carlberg M, Hardell L. Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation. Biomed Res Int. 2017;2017:9218486. doi: 10.1155/2017/9218486. PubMed PMID: 28401165. PubMed PMCID: PMC5376454.
  8. Hardell L, Carlberg M. Mobile phone and cordless phone use and the risk for glioma - Analysis of pooled case-control studies in Sweden, 1997-2003 and 2007-2009. Pathophysiology. 2015;22(1):1-13. doi: 10.1016/j.pathophys.2014.10.001. PubMed PMID: 25466607.
  9. Ibitayo AO, Afolabi OB, Akinyemi AJ, Ojiezeh TI, Adekoya KO, Ojewunmi OO. RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation. Biomed Res Int. 2017;2017:8653286. doi: 10.1155/2017/8653286. PubMed PMID: 28904975. PubMed PMCID: PMC5585657.
  10. Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets. Int J Radiat Biol. 2018;94(9):850-7. doi: 10.1080/09553002.2018.1490039. PubMed PMID: 29913098.
  11. Jaffar FHF, Osman K, Ismail NH, Chin KY, Ibrahim SF. Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J Exp Med. 2019;248(3):169-79. doi: 10.1620/tjem.248.169. PubMed PMID: 31353326.
  12. Saygin M, Ozmen O, Erol O, Ellidag HY, Ilhan I, Aslankoc R. The impact of electromagnetic radiation (2.45 GHz, Wi-Fi) on the female reproductive system: The role of vitamin C. Toxicol Ind Health. 2018;34(9):620-30. doi: 10.1177/0748233718775540. PubMed PMID: 29848237.
  13. Porsius JT, Claassen L, Smid T, Woudenberg F, Petrie KJ, Timmermans DR. Symptom reporting after the introduction of a new high-voltage power line: a prospective field study. Environ Res. 2015;138:112-7. doi: 10.1016/j.envres.2015.02.009. PubMed PMID: 25704831.
  14. Poulletier De Gannes F, Haro E, Hurtier A, Taxile M, Athane A, Ait-Aissa S, et al. Effect of in utero wi-fi exposure on the pre- and postnatal development of rats. Birth Defects Res B Dev Reprod Toxicol. 2012;95(2):130-6. doi: 10.1002/bdrb.20346. PubMed PMID: 22311618.
  15. Markov M, Grigoriev Y. Protect children from EMF. Electromagn Biol Med. 2015;34(3):251-6. doi: 10.3109/15368378.2015.1077339. PubMed PMID: 26444201.
  16. Media and Children. American Academy of Pediatrics; 2015. Available from:
  17. Shirbandi K, Khalafi M, Bevelacqua JJ, Sadeghian N, Adiban S, Bahaeddini Zarandi F, et al. Exposure to Low Levels of Radiofrequency Electromagnetic Fields Emitted from Cell-phones as a Promising Treatment of Alzheimer’s Disease: A Scoping Review Study. J Biomed Phys Eng. 2023;13(1):3-16. doi: 10.31661/jbpe.v0i0.2109-1398. PubMed PMID: 36818013. PubMed PMCID: PMC9923247.
  18. Mortazavi SAR, Mortazavi G, Mortazavi SMJ. Use of cell phones and brain tumors: a true association? Neurol Sci. 2017;38(11):2059-60. doi: 10.1007/s10072-017-3055-x. PubMed PMID: 28689225.
  19. Mortazavi SMJ, Rouintan MS, Taeb S, Dehghan N, Ghaffarpanah AA, Sadeghi Z, Ghafouri F. Human short-term exposure to electromagnetic fields emitted by mobile phones decreases computer-assisted visual reaction time. Acta Neurol Belg. 2012;112(2):171-5. doi: 10.1007/s13760-012-0044-y. PubMed PMID: 22426673.
  20. Mortazavi SMJ, Mosleh-Shirazi MA, Tavassoli A, Taheri M, Mehdizadeh AR, Namazi S, et al. Increased Radioresistance to Lethal Doses of Gamma Rays in Mice and Rats after Exposure to Microwave Radiation Emitted by a GSM Mobile Phone Simulator. Dose Response. 2012;11(2):281-92. doi: 10.2203/dose-response.12-010.Mortazavi. PubMed PMID: 23930107. PubMed PMCID: PMC3682203.
  21. Mortazavi SMJ, Mosleh-Shirazi MA, Tavassoli AR, Taheri M, Bagheri Z, Ghalandari R, et al. A comparative study on the increased radioresistance to lethal doses of gamma rays after exposure to microwave radiation and oral intake of flaxseed oil. Iran J Radiat Res. 2011;9(1):9-14.
  22. Mortavazi SMJ, Habib A, Ganj-Karami A, Samimi-Doost R, Pour-Abedi A, Babaie A. Alterations in TSH and Thyroid Hormones following Mobile Phone Use. Oman Med J. 2009;24(4):274-8. doi: 10.5001/omj.2009.56. PubMed PMID: 22216380. PubMed PMCID: PMC3243874.
  23. Mortazavi SMJ, Daiee E, Yazdi A, Khiabani K, Kavousi A, Vazirinejad R, et al. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use. Pak J Biol Sci. 2008;11(8):1142-6. doi: 10.3923/pjbs.2008.1142.1146. PubMed PMID: 18819554.
  24. Mortazavi SMJ, Ahmadi J, Shariati M. Prevalence of subjective poor health symptoms associated with exposure to electromagnetic fields among university students. Bioelectromagnetics. 2007;28(4):326-30. doi: 10.1002/bem.20305. PubMed PMID: 17330851.
  25. Mortazavi SMJ. Safety issues of mobile phone base stations. J Biomed Phys Eng. 2013;3(1):1-2.
  26. Parsanezhad ME, Mortazavi SMJ, Doohandeh T, Jahromi BN, Mozdarani H, Zarei A, et al. Exposure to radiofrequency radiation emitted from mobile phone jammers adversely affects the quality of human sperm. Int J Radiat Res. 2017;15(1):63-70. doi: 10.18869/acadpub.ijrr.15.1.63.
  27. Mortazavi SMJ, Parsanezhad ME, Kazempour M, Ghahramani P, Mortazavi SAR, Davari M. Male reproductive health under threat: Short term exposure to radiofrequency radiations emitted by common mobile jammers. J Hum Reprod Sci. 2013;6(2):124-8. doi: 10.4103/0974-1208.117178. PubMed PMID: 24082653. PubMed PMCID: PMC3778601.
  28. Mortazavi SMJ, Tavassoli A, Ranjbari F, Moammaiee P. Effects of laptop computers’ electromagnetic field on sperm quality. Journal of Reproduction & Infertility. 2010;11(4):251-8.
  29. Mortazavi SMJ, Vazife-Doost S, Yaghooti M, Mehdizadeh S, Rajaie-Far A. Occupational exposure of dentists to electromagnetic fields produced by magnetostrictive cavitrons alters the serum cortisol level. J Nat Sci Biol Med. 2012;3(1):60-4. doi: 10.4103/0976-9668.95958. PubMed PMID: 22690053. PubMed PMCID: PMC3361780.
  30. Mortazavi SMJ, Neghab M, Anoosheh SM, Bahaeddini N, Mortazavi G, Neghab P, Rajaeifard A. High-field MRI and mercury release from dental amalgam fillings. Int J Occup Environ Med. 2014;5(2):101-5. PubMed PMID: 24748001. PubMed PMCID: PMC7767616.
  31. Haghnegahdar A, Khosrovpanah H, Andisheh-Tadbir A, Mortazavi G, Saeedi Moghadam M, Mortazavi SMJ, et al. Design and fabrication of helmholtz coils to study the effects of pulsed electromagnetic fields on the healing process in periodontitis: preliminary animal results. J Biomed Phys Eng. 2014;4(3):83-90. PubMed PMID: 25505775. PubMed PMCID: PMC4258865.
  32. Mortazavi G, Mortazavi SMJ. Increased mercury release from dental amalgam restorations after exposure to electromagnetic fields as a potential hazard for hypersensitive people and pregnant women. Rev Environ Health. 2015;30(4):287-92. doi: 10.1515/reveh-2015-0017. PubMed PMID: 26544100.
  33. Zarei S, Mortazavi SMJ, Mehdizadeh AR, Jalalipour M, Borzou S, Taeb S, et al. A Challenging Issue in the Etiology of Speech Problems: The Effect of Maternal Exposure to Electromagnetic Fields on Speech Problems in the Offspring. J Biomed Phys Eng. 2015;5(3):151-4. PubMed PMID: 26396971. PubMed PMCID: PMC4576876.
  34. Mortazavi G, Haghani M, Rastegarian N, Zarei S, Mortazavi SMJ. Increased Release of Mercury from Dental Amalgam Fillings due to Maternal Exposure to Electromagnetic Fields as a Possible Mechanism for the High Rates of Autism in the Offspring: Introducing a Hypothesis. J Biomed Phys Eng. 2016;6(1):41-6. PubMed PMID: 27026954. PubMed PMCID: PMC4795328.
  35. Gandhi OP, Morgan LL, De Salles AA, Han YY, Herberman RB, Davis DL. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med. 2012;31(1):34-51. doi: 10.3109/15368378.2011.622827. PubMed PMID: 21999884.
  36. Haarala C, Bergman M, Laine M, Revonsuo A, Koivisto M, Hämäläinen H. Electromagnetic field emitted by 902 MHz mobile phones shows no effects on children’s cognitive function. 2005;Suppl 7:S144-50. doi: 10.1002/bem.20142. PubMed PMID: 16059918.
  37. Preece AW, Goodfellow S, Wright MG, Butler SR, Dunn EJ, Johnson Y, Manktelow TC, Wesnes K. Effect of 902 MHz mobile phone transmission on cognitive function in children. Bioelectromagnetics. 2005;Suppl 7:S138-43. doi: 10.1002/bem.20128. PubMed PMID: 15931678.
  38. Preece AW, Iwi G, Davies-Smith A, Wesnes K, Butler S, Lim E, Varey A. Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol. 1999;75(4):447-56. doi: 10.1080/095530099140375. PubMed PMID: 10331850.
  39. Mortazavi SAR, Tavakkoli-Golpayegani A, Haghani M, Mortazavi SMJ. Looking at the other side of the coin: the search for possible biopositive cognitive effects of the exposure to 900 MHz GSM mobile phone radiofrequency radiation. J Environ Health Sci Eng. 2014;12:75. doi: 10.1186/2052-336X-12-75. PubMed PMID: 24843789. PubMed PMCID: PMC4004454.
  40. Movvahedi MM, Tavakkoli-Golpayegani A, Mortazavi SAR, Haghani M, Razi Z, Shojaie-Fard MB, et al. Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students? J Pediatr Neurosci. 2014;9(2):121-4. doi: 10.4103/1817-1745.139300. PubMed PMID: 25250064. PubMed PMCID: PMC4166831.
  41. Mortazavi SM, Taeb S, Dehghan N. Alterations of visual reaction time and short term memory in military radar personnel. Iran J Public Health. 2013;42(4):428-35. PubMed PMID: 23785684. PubMed PMCID: PMC3684731.
  42. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357-67. doi: 10.1016/S1474-4422(13)70044-9. PubMed PMID: 23477989.
  43. Mortazavi S, Shojaei-Fard MB, Haghani M, Shokrpour N, Mortazavi SMJ. Exposure to mobile phone radiation opens new horizons in Alzheimer’s disease treatment. J Biomed Phys Eng. 2013;3(3):109-12. PubMed PMID: 25505755. PubMed PMCID: PMC4204502.
  44. Mortazavi SMJ, Motamedifar M, Namdari G, Taheri M, Mortazavi SAR, Shokrpour N. Non-linear adaptive phenomena which decrease the risk of infection after pre-exposure to radiofrequency radiation. Dose Response. 2013;12(2):233-45. doi: 10.2203/dose-response.12-055.Mortazavi. PubMed PMID: 24910582. PubMed PMCID: PMC4036396.
  45. Mortazavi SMJ, Motamedifar M, Mehdizadeh AR, Namdari G, Taheri M. The Effect of Pre-exposure to Radiofrequency Radiations Emitted from a GSM Mobile Phone on the Suseptibility of BALB/c Mice to Escherichia coli. J Biomed Phys Eng. 2012;2(4):139-46.
  46. Mortazavi SMJ, Zarei S, Taheri M, Tajbakhsh S, Mortazavi SAR, Ranjbar S, et al. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran. Int J Occup Environ Med. 2017;8(2):80-4. doi: 10.15171/ijoem.2017.958. PubMed PMID: 28432369. PubMed PMCID: PMC6679611.
  47. Mortazavi SMJ, Mosleh-Shirazi MA, Mehdizadeh S, Rouintan MS, Ebrahimi J, Tamaddon M, Koshnevis M. Short-term radon inhalation induces significant survival adaptive response in Balb/c mice. Int J Low Radiation. 2010;7(2):98-109. doi: 10.1504/IJLR.2010.032813.
  48. Mortazavi SMJ, Shabestani-Monfared A, Ghiassi-Nejad M, Mozdarani H. Radioadaptive responses induced in lymphocytes of the inhabitants in Ramsar, Iran. International Congress Series. 2005;1276:201-3. doi: 10.1016/j.ics.2004.12.002.
  49. Mortazavi SMJ, Cameron JR, Niroomand-Rad A. The life saving role of radioadaptive responses in long-term interplanetary space journeys. International Congress Series. 2005;1276:266-7. doi: 10.1016/j.ics.2004.12.019.
  50. Bevelacqua JJ, Mortazavi SMJ. Commentary: Human Pathophysiological Adaptations to the Space Environment. Front Physiol. 2018;8:1116. doi: 10.3389/fphys.2017.01116. PubMed PMID: 29358922. PubMed PMCID: PMC5766677.
  51. Mortazavi SMJ, Ikushima T, Mozdarani H. Variablity of chromosomal radioadaptive response in human lymphocytes. Iran J Radat Res. 2003;1(1):55-61.
  52. Mortazavi SMJ, Cameron JR, Niroomand-rad A. Adaptive response studies may help choose astronauts for long-term space travel. Adv Space Res. 2003;31(6):1543-51. doi: 10.1016/s0273-1177(03)00089-9. PubMed PMID: 12971409.
  53. Mortazavi SMJ, Cameron JR, Niroomand-Rad A. Is the adaptive response an efficient protection against the detrimental effects of space radiation. Proceedings of the 28th International Cosmic Ray Conference; Tsukuba, Japan: Under the auspices of the International Union of Pure and Applied Physics (IUPAP); 2003.
  54. Ghiassi-nejad M, Mortazavi SM, Cameron JR, Niroomand-rad A, Karam PA. Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys. 2002;82(1):87-93. doi: 10.1097/00004032-200201000-00011. PubMed PMID: 11769138.
  55. Mortazavi SMJ. Space research and EMF-induced adaptive responses. Journal of Medical Hypotheses and Ideas. 2013;7(1):1-2. doi: 10.1016/j.jmhi.2012.10.001.
  56. Mortazavi SMJ. Window theory in non-ionizing radiation-induced adaptive responses. Dose Response. 2013;11(2):293-4. doi: 10.2203/dose-response.12-060.Mortazavi. PubMed PMID: 23930108. PubMed PMCID: PMC3682204.
  57. Mortazavi SMJ, Motamedifar M, Namdari G, Taheri M, Mortazavi SAR. Counterbalancing immunosuppression-induced infections during long-term stay of humans in space. Journal of Medical Hypotheses and Ideas. 2013;7(1):8-10. doi: 10.1016/j.jmhi.2012.12.001.
  58. Mortazavi SMJ, Mostafavi-Pour Z, Daneshmand M, Zal F, Zare R, Mosleh-Shirazi MA. Adaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity. J Biomed Phys Eng. 2017;7(2):137-42. PubMed PMID: 28580335. PubMed PMCID: PMC5447250.
  59. Sawyer SM, Azzopardi PS, Wickremarathne D, Patton GC. The age of adolescence. Lancet Child Adolesc Health. 2018;2(3):223-8. doi: 10.1016/S2352-4642(18)30022-1. PubMed PMID: 30169257.
  60. Piccinetti CC, De Leo A, Cosoli G, Scalise L, Randazzo B, Cerri G, Olivotto I. Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study. Ecotoxicol Environ Saf. 2018;154:268-79. doi: 10.1016/j.ecoenv.2018.02.053. PubMed PMID: 29477917.
  61. Kazemi E, Mortazavi SMJ, Ali-Ghanbari A, Sharifzadeh S, Ranjbaran R, Mostafavi-Pour Z, et al. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells. J Biomed Phys Eng. 2015;5(3):105-14. PubMed PMID: 26396966. PubMed PMCID: PMC4576871.
  62. Eghlidospour M, Ghanbari A, Mortazavi SMJ, Azari H. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells. Anat Cell Biol. 2017;50(2):115-23. doi: 10.5115/acb.2017.50.2.115. PubMed PMID: 28713615. PubMed PMCID: PMC5509895.
  63. Morgan LL, Kesari S, Davis DL. Why children absorb more microwave radiation than adults: The consequences. Journal of Microscopy and Ultrastructure. 2014;2(4):197-204. doi: 10.1016/j.jmau.2014.06.005.
  64. Kheifets L, Repacholi M, Saunders R, Van Deventer E. The sensitivity of children to electromagnetic fields. 2005;116(2):e303-13. doi: 10.1542/peds.2004-2541. PubMed PMID: 16061584.
  65. Calvente I, Pérez-Lobato R, Núñez MI, Ramos R, Guxens M, Villalba J, et al. Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys? 2016;37(1):25-36. doi: 10.1002/bem.21951. PubMed PMID: 26769168.
  66. Warille AA, Onger ME, Turkmen AP, Deniz ÖG, Altun G, Yurt KK, et al. Controversies on electromagnetic field exposure and the nervous systems of children. Histol Histopathol. 2016;31(5):461-8. doi: 10.14670/HH-11-707. PubMed PMID: 26661935.
  67. Zhang Y, Li Z, Gao Y, Zhang C. Effects of fetal microwave radiation exposure on offspring behavior in mice. J Radiat Res. 2015;56(2):261-8. doi: 10.1093/jrr/rru097. PubMed PMID: 25359903. PubMed PMCID: PMC4380045.
  68. Krause CM, Björnberg CH, Pesonen M, Hulten A, Liesivuori T, Koivisto M, et al. Mobile phone effects on children’s event-related oscillatory EEG during an auditory memory task. Int J Radiat Biol. 2006;82(6):443-50. doi: 10.1080/09553000600840922. PubMed PMID: 16846979.
  69. Feychting M. Non-cancer EMF effects related to children. Bioelectromagnetics. 2005;Suppl 7:S69-74. doi: 10.1002/bem.20153. PubMed PMID: 16142774.
  70. Byun YH, Ha M, Kwon HJ, Hong YC, Leem JH, Sakong J, et al. Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: a longitudinal study. PLoS One. 2013;8(3):e59742. doi: 10.1371/journal.pone.0059742. PubMed PMID: 23555766. PubMed PMCID: PMC3605379.
  71. Sudan M, Kheifets L, Arah OA, Olsen J. Cell phone exposures and hearing loss in children in the Danish National Birth Cohort. Paediatr Perinat Epidemiol. 2013;27(3):247-57. doi: 10.1111/ppe.12036. PubMed PMID: 23574412. PubMed PMCID: PMC3625978.
  72. Davis D, Golomb B, Heuser G, Miller A, Morris R, Sasco A. Letter to U.S. Secretary of Education from EHT on Wireless in Schools. 2015. Available from: