Document Type: Review Article

Authors

1 MSc, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 MSc, Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran

3 PhD, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

4 PhD, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

A bystander effect is biological changes in non-irradiated cells by transmitted signals from irradiated bystander cells, which causes the radiation toxic effects on the adjacent non-irradiated tissues. This phenomenon occurs by agents such as ionizing radiation, ultraviolet radiation (UVR) and chemotherapy. The bystander effect includes biological processes such as damage to DNA, cell death, chromosomal abnormalities, delay and premature mutations and micronuclei production. The most involved genes in creating this phenomenon are cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the nuclear factor of kappa B (NFkB) and Mitogen-Activated Protein Kinases (MAPKs).
Radiation generated reactive oxygen species (ROS) can damage DNA, membranes and protein buildings. Studies have shown that Vitamin C, Hesperidin, and melatonin can reduce the number of ROS and have a protective role.
Silver nanoparticles (Ag NPs) are the most abundant nanoparticles produced and when they enter cells, they can create DNA damage. Studies have shown that combined treatment with UVR and silver nanoparticles could form γ-H2AX and 8-hydroxy-2′-deoxyguanosine (8-OHdG) synergistically.
This article reviews the direct and the bystander effects of UVR on the nuclear DNA, the effect of radioprotectors and Ag NPs on these effects.

Keywords

  1. Kwon DH, Moon JD, Park WJ, Kang WY, Kim SH, Lim HM, et al. Case series of keratitis in poultry abattoir workers induced by exposure to the ultraviolet disinfection lamp. Ann Occup Environ Med. 2016;28:3. doi: 10.1186/s40557-015-0087-7. PubMed PMID: 26779342. PubMed PMCID: PMC4714468.
  2. Fotouhi A, Hagos WW, Ilic M, Wojcik A, Harms-Ringdahl M, De Gruijl F, et al. Analysis of mutant frequencies and mutation spectra in hMTH1 knockdown TK6 cells exposed to UV radiation. Mutat Res. 2013;751-752:8-14. doi: 10.1016/j.mrfmmm.2013.10.001. PubMed PMID: 24144844.
  3. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14:12222-48. doi: 10.3390/ijms140612222. PubMed PMID: 23749111. PubMed PMCID: PMC3709783.
  4. Scheuer C, Pommergaard HC, Rosenberg J, Gogenur I. Melatonin’s protective effect against UV radiation: a systematic review of clinical and experimental studies. Photodermatol Photoimmunol Photomed. 2014;30:180-8. doi: 10.1111/phpp.12080. PubMed PMID: 24164339.
  5. Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 2015;356:43-51. doi: 10.1016/j.canlet.2014.01.023. PubMed PMID: 24530228.
  6. Lans H, Marteijn JA, Schumacher B, Hoeijmakers JH, Jansen G, Vermeulen W. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet. 2010;6:e1000941. doi: 10.1371/journal.pgen.1000941. PubMed PMID: 20463888.PubMed PMCID: PMC2865526.
  7. Abdel-Malek ZA, Kadekaro AL, Swope VB. Stepping up melanocytes to the challenge of UV exposure. Pigment Cell Melanoma Res. 2010;23:171-86. doi: 10.1111/j.1755-148X.2010.00679.x. PubMed PMID: 20128873.
  8. Hanasoge S, Ljungman M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis. 2007;28:2298-304. doi: 10.1093/carcin/bgm157. PubMed PMID: 17615256.
  9. Glover KP, Markell LK, Donner EM, Han X. Protein kinase C-activating tumor promoters modulate the DNA damage response in UVC-irradiated TK6 cells. Toxicol Lett. 2014;229:210-9. doi: 10.1016/j.toxlet.2014.06.030. PubMed PMID: 24960060.
  10. Widel M. Bystander effect induced by UV radiation; why should we be interested? Postepy Hig Med Dosw (Online). 2012;66:828-37. doi: 10.5604/17322693.1019532. PubMed PMID: 23175338.
  11. Rostami A, Toossi MT, Sazgarnia A, Soleymanifard S. The effect of glucose-coated gold nanoparticles on radiation bystander effect induced in MCF-7 and QUDB cell lines. Radiat Environ Biophys. 2016;55:461-6. doi: 10.1007/s00411-016-0669-y. PubMed PMID: 27613311.
  12. Widel M, Krzywon A, Gajda K, Skonieczna M, Rzeszowska-Wolny J. Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic Biol Med. 2014;68:278-87. doi: 10.1016/j.freeradbiomed.2013.12.021. PubMed PMID: 24373962.
  13. Najafi M, Fardid R, Hadadi G, Fardid M. The mechanisms of radiation-induced bystander effect. J Biomed Phys Eng. 2014;4:163-72. PubMed PMID: 25599062. PubMed PMCID: PMC4289523.
  14. Lin X, Wei F, Major P, Al-Nedawi K, Al Saleh HA, Tang D. Microvesicles Contribute to the Bystander Effect of DNA Damage. Int J Mol Sci. 2017;18: 788. doi: 10.3390/ijms18040788. PubMed PMID: 28387728. PubMed PMCID: PMC5412372.
  15. Ghosh R, Guha D, Bhowmik S, Karmakar S. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells. Mutat Res. 2013;757:83-90. doi: 10.1016/j.mrgentox.2013.06.022. PubMed PMID: 23845763.
  16. Dickey JS, Baird BJ, Redon CE, Sokolov MV, Sedelnikova OA, Bonner WM. Intercellular communication of cellular stress monitored by gamma-H2AX induction. Carcinogenesis. 2009;30:1686-95. doi: 10.1093/carcin/bgp192. PubMed PMID: 19651821. PubMed PMCID: PMC2757548.
  17. Byun S, Lee KW, Jung SK, Lee EJ, Hwang MK, Lim SH, et al. Luteolin inhibits protein kinase C(epsilon) and c-Src activities and UVB-induced skin cancer. Cancer Res. 2010;70:2415-23. doi: 10.1158/0008-5472.CAN-09-4093. PubMed PMID: 20215519.
  18. Fardid R, Salajegheh A, Mosleh-Shirazi MA, Sharifzadeh S, Okhovat MA, Najafi M, et al. Melatonin ameliorates the production of COX-2, iNOS, and the formation of 8-OHdG in non-targeted lung tissue after pelvic irradiation. Cell Journal (Yakhteh). 2017;19:324-331.
  19. Katiyar SK. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system. Mol Nutr Food Res. 2016;60:1374-82. doi: 10.1002/mnfr.201501026. PubMed PMID: 26991736.PubMed PMCID: PMC4899090.
  20. László CF, Fayad S, Carpenter OL, George KS, Lu W, Saad AA, Wu S. The role of translational regulation in ultraviolet C light-induced cyclooxygenase-2 expression. Life Sci. 2009;85:70-6. doi: 10.1016/j.lfs.2009.04.018.
  21. Zhao X, Takabayashi F, Ibuki Y. Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX. J Photochem Photobiol B. 2016;162:213-22. doi: 10.1016/j.jphotobiol.2016.06.046. PubMed PMID: 27383448.
  22. Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012;67:1013-24. doi: 10.1016/j.jaad.2012.02.009. PubMed PMID: 22406231.
  23. Poljsak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatol Res Pract. 2012;2012:135206. doi: 10.1155/2012/135206. PubMed PMID: 22505880. PubMed PMCID: PMC3299230.
  24. Goswami S, Sharma S, Haldar C. The oxidative damages caused by ultraviolet radiation type C (UVC) to a tropical rodent Funambulus pennanti: role of melatonin. J Photochem Photobiol B. 2013;125:19-25. doi: 10.1016/j.jphotobiol.2013.04.008. PubMed PMID: 23708058.
  25. Fardid R, Ghorbani Z, Haddadi G, Behzad-Behbahani A, Arabsolghar R, Kazemi E, et al. Effects of Hesperidin as a Radio-protector on Apoptosis in Rat Peripheral Blood Lymphocytes after Gamma Radiation. J Biomed Phys Eng. 2016;6:217-28. PubMed PMID: 28144590. PubMed PMCID: PMC5219572.
  26. Shirazi A, Fardid R, Mihandoost E. Protective effect of low dose melatonin on radiation-induced damage to rat liver. Journal of Biomedical Physics and Engineering. 2012;2(2): 66-71.
  27. Rezaeyan A, Fardid R, Haddadi GH, Takhshid MA, Hosseinzadeh M, Najafi M, et al. Evaluating Radioprotective Effect of Hesperidin on Acute Radiation Damage in the Lung Tissue of Rats. J Biomed Phys Eng. 2016;6:165-74. PubMed PMID: 27853724. PubMed PMCID: PMC5106549.
  28. Eftekhari-Kenzerki Z, Fardid R, Behzad-Behbahani A. Impact of silver nanoparticles on the ultraviolet radiation direct and bystander effects on TK6 cell line. J Med Phys. 2019;44:118-25. doi: 10.4103/jmp.JMP_111_18.
  29. Zare T, Fardid R, Naderi S. Synergetic effect of silver nanoparticles and UVC irradiation on H2AX gene expression in TK6 cells. Cell J. 2019; 21(2): 204-209. doi: 10.22074/cellj.2019.5898.