Document Type : Original Research

Authors

1 PhD, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 PhD, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

3 PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Background: Gold nanoshells can be tuned to absorb a particular wavelength of light. As a result, these tunable nanoparticles (NPs) can efficiently absorb light and convert it to heat. This phenomenon can be used for cancer treatment known as photothermal therapy. In this study, we synthesized Fe3O4@Au core-shell NPs, magnetically targeted them towards tumor, and used them for photothermal therapy of cancer.
Objective: The main purpose of this research was to synthesize Fe3O4@Au core-shell NPs, magnetically target them towards tumor, and use them for photothermal therapy of cancer.
Material and Methods: In this experimental study, twenty mice received 2 × 106 B16-F10 melanoma cells subcutaneously. After tumors volume reached 100 mm3,the mice were divided into five groups including a control group, NPs group, laser irradiation group, NPs + laser group and NPs + magnet + laser group. NPs were injected intravenously. After 6 hours, the tumor region was irradiated by laser (808 nm, 2.5 W/cm2, 6 minutes). The tumor volumes were measured every other day.
Results: The effective diameter of Fe3O4@Au NPs was approximately 37.8 nm. The average tumor volume in control group, NPs group, laser irradiation group, NPs + laser irradiation group and NPs + magnet + laser irradiation group increased to 47.3, 45.3, 32.8, 19.9 and 7.7 times, respectively in 2 weeks. No obvious change in the average body weight for different groups occurred.
Conclusion: Results demonstrated that magnetically targeted nano-photothermal therapy of cancer described in this paper holds great promise for the selective destruction of tumors.

Keywords

  1. Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma in the era of molecular profiling. Lancet. 2009;374:362-5. doi: 10.1016/S0140-6736(09)61397-0. PubMed PMID: 19647595.
  2. Huo L, Yao H, Wang X, Wong GW, Kung HF, Lin MC. Inhibition of melanoma growth by subcutaneous administration of hTERTC27 viral cocktail in C57BL/6 mice. PLoS One. 2010;5:e12705. doi: 10.1371/journal.pone.0012705. PubMed PMID: 20856939. PubMed PMCID: PMC2938346.
  3. Doaga A. Phenomenological study of thermal field generated by nanoparticles arrays in hypertermia as treatment method. Journal of Advanced Research in Physics. 2011;2.
  4. Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E Low Dimens Syst Nanostruct. 2016;81:308-14.
  5. Niemz MH. Laser-tissue interactions: fundamentals and applications. Berlin: Springer Science & Business Media; 2013. p. 303.
  6. Neshastehriz A, Tabei M, Maleki S, Eynali S, Shakeri-Zadeh A. Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6 MV X-ray on mouth epidermal carcinoma cells. JJ Photochem Photobiol B. 2017;172:52-60.
  7. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209:171-6. doi: 10.1016/j.canlet.2004.02.004. PubMed PMID: 15159019.
  8. Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129-35. doi: 10.1016/j.canlet.2005.07.035. PubMed PMID: 16198049.
  9. Heidari M, Sattarahmady N, Azarpira N, Heli H, Mehdizadeh AR, Zare T. Photothermal cancer therapy by gold-ferrite nanocomposite and near-infrared laser in animal model. Lasers Med Sci. 2016;31:221-7. doi: 10.1007/s10103-015-1847-x. PubMed PMID: 26694488.
  10. Robinson DS, Parel JM, Denham DB, Gonzalez-Cirre X, Manns F, Milne PJ, et al. Interstitial laser hyperthermia model development for minimally invasive therapy of breast carcinoma. J Am Coll Surg. 1998;186:284-92. PubMed PMID: 9510259.
  11. Masters A, Steger AC, Lees WR, Walmsley KM, Bown SG. Interstitial laser hyperthermia: a new approach for treating liver metastases. Br J Cancer. 1992;66:518-22. PubMed PMID: 1520588.PubMed PMCID: PMC1977951.
  12. Park JH, Von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, Ruoslahti E, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci U S A. 2010;107:981-6. doi: 10.1073/pnas.0909565107. PubMed PMID: 20080556. PubMed PMCID: PMC2824295.
  13. Guo Y, Zhang Z, Kim DH, Li W, Nicolai J, Procissi D, et al. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int J Nanomedicine. 2013;8:3437-46. doi: 10.2147/IJN.S47585. PubMed PMID: 24039426. PubMed PMCID: PMC3771851.
  14. Zharov V, Letfullin R, Galitovskaya E. Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. Journal of Physics D: Applied Physics. 2005;38:2571.
  15. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238-48. doi: 10.1021/jp057170o. PubMed PMID: 16599493.
  16. Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research. 2010;1:13-28.
  17. Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? Nanomaterials (Basel). 2015;5:1853-79. doi: 10.3390/nano5041853. PubMed PMID: 28347100. PubMed PMCID: PMC5304792.
  18. Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, et al. Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Appl Mater Interfaces. 2013;5:4966-71. doi: 10.1021/am400721s. PubMed PMID: 23683167.
  19. Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M, et al. Gold?Coated Fe3O4 Nanoroses with Five Unique Functions for Cancer Cell Targeting, Imaging, and Therapy. Advanced Functional Materials. 2014;24:1772-80.
  20. Feng W, Zhou X, Nie W, Chen L, Qiu K, Zhang Y, et al. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study. ACS Appl Mater Interfaces. 2015;7:4354-67. doi: 10.1021/am508837v. PubMed PMID: 25664659.
  21. Hu Y, Meng L, Niu L, Lu Q. Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. ACS Appl Mater Interfaces. 2013;5:4586-91. doi: 10.1021/am400843d. PubMed PMID: 23659588.
  22. Li WP, Liao PY, Su CH, Yeh CS. Formation of oligonucleotide-gated silica shell-coated Fe(3)O(4)-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc. 2014;136:10062-75. doi: 10.1021/ja504118q. PubMed PMID: 24953310.
  23. Hoskins C, Min Y, Gueorguieva M, McDougall C, Volovick A, Prentice P, et al. Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J Nanobiotechnology. 2012;10:27. doi: 10.1186/1477-3155-10-27. PubMed PMID: 22731703. PubMed PMCID: PMC3448509.
  24. Montazerabadi AR, Oghabian MA, Irajirad R, Muhammadnejad S, Ahmadvand D, Delavari H H, et al. Development of gold-coated magnetic nanoparticles as a potential MRI contrast agent. Nano. 2015;10:1550048.
  25. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics. 1981;17:1247-8.
  26. Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5? 40 nm diameter gold nanoparticles. Langmuir. 2001;17:6782-6.
  27. Jensen MM, Jørgensen JT, Binderup T, Kjær A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18 F-FDG-microPET or external caliper. BMC Med Imaging. 2008;8:16.
  28. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 2012;33:2215-22. doi: 10.1016/j.biomaterials.2011.11.069. PubMed PMID: 22169825.
  29. Kersemans V, Cornelissen B, Allen PD, Beech JS, Smart SC. Subcutaneous tumor volume measurement in the awake, manually restrained mouse using MRI. J Magn Reson Imaging. 2013;37:1499-504. doi: 10.1002/jmri.23829. PubMed PMID: 23023925.
  30. Liu H, Chen D, Tang F, Du G, Li L, Meng X, et al. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology. 2008;19:455101. doi: 10.1088/0957-4484/19/45/455101. PubMed PMID: 21832760.
  31. Yan LL, Zhang YJ, Gao WY, Man SL, Wang Y. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp Oncol. 2009;31:27-32. PubMed PMID: 19300413.
  32. Robinson I, Tung LD, Maenosono S, Walti C, Thanh NT. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale. 2010;2:2624-30. doi: 10.1039/c0nr00621a. PubMed PMID: 20967339.
  33. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Letters. 2004;4:719-23.
  34. Cheong SK, Krishnan S, Cho SH. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med Phys. 2009;36:4664-71. doi: 10.1118/1.3215536. PubMed PMID: 19928098.
  35. Elliott AM, Shetty AM, Wang J, Hazle JD, Jason Stafford R. Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours. Int J Hyperthermia. 2010;26:434-40. doi: 10.3109/02656731003685805. PubMed PMID: 20597626.
  36. Elliott AM, Stafford RJ, Schwartz J, Wang J, Shetty AM, Bourgoyne C, et al. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med Phys. 2007;34:3102-8. doi: 10.1118/1.2733801. PubMed PMID: 17822017.