Document Type: Original Research


1 MSc, Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 MSc, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 PhD, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

4 PhD, Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

5 MSc, Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

6 PhD, Ionizing and Nonionizing Radiation Protection Research Center, and Department of Radiotherapy and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran


Background: Ionizing radiation plays a significant role in cancer treatment. Despite recent advances in radiotherapy approaches, the existence of irradiation-resistant cancer cells is still a noteworthy challenge. Therefore, developing novel therapeutic approaches are still warranted in order to increase the sensitivity of tumor cells to radiation. Many types of research rely on the role of mitochondria in radiation protection.
Objective: Here, we aimed to target the mitochondria of monocyticleukemia (THP-1) radio-resistant cell line cells by a mitochondrial disrupting peptide, D (KLAKLAK)2, and investigate the synergistic effect of Gamma-irradiation and KLA for tumor cells inhibition in vitro.
Material and Methods: In this experimental study, KLA was delivered into THP-1 cells using a Cell-Penetrating Peptide (CPP).The cells were then exposed to gamma-ray radiation both in the presence and absence of KLA conjugated with CPP. The impacts of KLA, ionizing radiation or combination of both were then evaluated on the cell proliferation and apoptosis of THP-1 cells using MTT assay and flow cytometry, respectively.
Results: The MTT assay indicated the anti-proliferative effects of combined D (KLAKLAK)2 peptide with ionizing radiation on THP-1cells. Moreover, synergetic effects of KLA and ionizing radiation reduced cell viability and consequently enhanced cell apoptosis.
Conclusion: Using KLA peptide in combination with ionizing irradiation increases the anticancer effects of radio-resistant THP-1 cells. Therefore, the combinational therapy of (KLAKLAK)2 and radiation is a promising strategy for cancer treatment the in future.


  1. Sharma RA, Plummer R, Stock JK, Greenhalgh TA, Ataman O, Kelly S, et al. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol. 2016;13:627-42. doi: 10.1038/nrclinonc.2016.79. PubMed PMID: 27245279.
  2. Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007;25:4066-74. doi: 10.1200/JCO.2007.12.7878. PubMed PMID: 17827455.
  3. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366-74. doi: 10.1038/35077232. PubMed PMID: 11357144.
  4. Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, et al. Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010;16:4532-42. doi: 10.1158/1078-0432.CCR-10-0523. PubMed PMID: 20823146. PubMed PMCID: PMC2940983.
  5. Borrego-Soto G, Ortiz-Lopez R, Rojas-Martinez A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol. 2015;38:420-32. doi: 10.1590/S1415-475738420150019. PubMed PMID: 26692152. PubMed PMCID: PMC4763322.
  6. Tominaga H, Kodama S, Matsuda N, Suzuki K, Watanabe M. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation. J Radiat Res. 2004;45:181-8. PubMed PMID: 15304958.
  7. Chen S, Zhao Y, Zhao G, Han W, Bao L, Yu KN, et al. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects. Mutat Res. 2009;666:68-73. doi: 10.1016/j.mrfmmm.2009.04.006. PubMed PMID: 19393669.
  8. Kim GJ, Fiskum GM, Morgan WF. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res. 2006;66:10377-83. doi: 10.1158/0008-5472.CAN-05-3036. PubMed PMID: 17079457.PubMed PMCID: PMC2570498.
  9. Majima HJ, Indo HP, Tomita K, Suenaga S, Motoori S, Kato H, et al. Intracellular oxidative stress caused by ionizing radiation. Oxidative Stress, Disease and Cancer; World Scientific; 2006. p. 61-83.
  10. Girdhani S, Bhosle SM, Thulsidas SA, Kumar A, Mishra KP. Potential of radiosensitizing agents in cancer chemo-radiotherapy. J Cancer Res Ther. 2005;1:129-31. PubMed PMID: 17998642.
  11. Rajagopalan MS, Gupta K, Epperly MW, Franicola D, Zhang X, Wang H, et al. The mitochondria-targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair. In Vivo. 2009;23:717-26. PubMed PMID: 19779106. PubMed PMCID: PMC2899481.
  12. Deckbar D, Jeggo PA, Lobrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 2011;46:271-83. doi: 10.3109/10409238.2011.575764. PubMed PMID: 21524151. PubMed PMCID: PMC3171706.
  13. Kim BM, Hong Y, Lee S, Liu P, Lim JH, Lee YH, et al. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci. 2015;16:26880-913. doi: 10.3390/ijms161125991. PubMed PMID: 26569225.PubMed PMCID: PMC4661850.
  14. Kam WW, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 2013;65:607-19. doi: 10.1016/j.freeradbiomed.2013.07.024. PubMed PMID: 23892359.
  15. Epperly MW, Gretton JE, Sikora CA, Jefferson M, Bernarding M, Nie S, et al. Mitochondrial localization of superoxide dismutase is required for decreasing radiation-induced cellular damage. Radiat Res. 2003;160:568-78. PubMed PMID: 14565825.
  16. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, et al. Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol. 2003;23:2362-78. PubMed PMID: 12640121. PubMed PMCID: PMC150726.
  17. Gaziev AI, Shaikhaev GO. Ionizing radiation can activate the insertion of mitochondrial DNA fragments in the nuclear genome. Radiats Biol Radioecol. 2007;47:673-83. PubMed PMID: 18380326.
  18. Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM, et al. De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem. 1996;39:3107-13. doi: 10.1021/jm9509410. PubMed PMID: 8759631.
  19. Han K, Lei Q, Wang SB, Hu JJ, Qiu WX, Zhu JY, et al. Dual-Stage-Light-Guided Tumor Inhibition by Mitochondria-Targeted Photodynamic Therapy. Advanced Functional Materials. 2015;25:2961-71.
  20. Dias N, Bailly C. Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol. 2005;70:1-12. doi: 10.1016/j.bcp.2005.03.021. PubMed PMID: 15907809.
  21. Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19:3794-804. PubMed PMID: 22725698. PubMed PMCID: PMC4537071.
  22. Liu X, Cao R, Wang S, Jia J, Fei H. Amphipathicity Determines Different Cytotoxic Mechanisms of Lysine- or Arginine-Rich Cationic Hydrophobic Peptides in Cancer Cells. J Med Chem. 2016;59:5238-47. doi: 10.1021/acs.jmedchem.5b02016. PubMed PMID: 27195657.
  23. Bases R. Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70. Cell Stress Chaperones. 2005;10:37-45. PubMed PMID: 15832946. PubMed PMCID: PMC1074569.
  24. Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. 2016;32:543-61. doi: 10.1007/s10565-016-9354-9. PubMed PMID: 27473378.
  25. Chen X, Radany EH, Wong P, Ma S, Wu K, Wang B, et al. Suberoylanilide hydroxamic acid induces hypersensitivity to radiation therapy in acute myelogenous leukemia cells expressing constitutively active FLT3 mutants. PLoS One. 2013;8:e84515. doi: 10.1371/journal.pone.0084515. PubMed PMID: 24367670.PubMed PMCID: PMC3868602.
  26. Kondo E, Saito K, Tashiro Y, Kamide K, Uno S, Furuya T, et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun. 2012;3:951. doi: 10.1038/ncomms1952. PubMed PMID: 22805558.
  27. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526-42. doi: 10.1038/nrd4003. PubMed PMID: 23812271. PubMed PMCID: PMC3906736.
  28. Miller CP, Singh MM, Rivera-Del Valle N, Manton CA, Chandra J. Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed Biotechnol. 2011;2011:514261. doi: 10.1155/2011/514261. PubMed PMID: 21765634. PubMed PMCID: PMC3134392.
  29. Yang SH, Kuo TC, Wu H, Guo JC, Hsu C, Hsu CH, et al. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer. World J Gastroenterol. 2016;22:7275-88. doi: 10.3748/wjg.v22.i32.7275. PubMed PMID: 27621574. PubMed PMCID: PMC4997635.
  30. Mai JC, Mi Z, Kim SH, Ng B, Robbins PD. A proapoptotic peptide for the treatment of solid tumors. Cancer Res. 2001;61:7709-12. PubMed PMID: 11691780.
  31. Kolevzon N, Kuflik U, Shmuel M, Benhamron S, Ringel I, Yavin E. Multiple triphenylphosphonium cations as a platform for the delivery of a pro-apoptotic peptide. Pharm Res. 2011;28:2780-9. doi: 10.1007/s11095-011-0494-6. PubMed PMID: 21633875.
  32. Ma X, Xi L, Luo D, Liu R, Li S, Liu Y, et al. Anti-tumor effects of the peptide TMTP1-GG-D(KLAKLAK)(2) on highly metastatic cancers. PLoS One. 2012;7:e42685. doi: 10.1371/journal.pone.0042685. PubMed PMID: 22984407.PubMed PMCID: PMC3439480.
  33. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5:1032-8. doi: 10.1038/12469. PubMed PMID: 10470080.
  34. Richardson RB, Harper ME. Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget. 2016;7:21469-83. doi: 10.18632/oncotarget.7412. PubMed PMID: 26894978.PubMed PMCID: PMC5008299.
  35. Yoshino H, Chiba K, Saitoh T, Kashiwakura I. Ionizing radiation affects the expression of Toll-like receptors 2 and 4 in human monocytic cells through c-Jun N-terminal kinase activation. J Radiat Res. 2014;55:876-84. doi: 10.1093/jrr/rru040. PubMed PMID: 24927726. PubMed PMCID: PMC4202298.