Document Type: Original Research

Authors

1 MSc, Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon

2 MSc, Department of Biochemistry, Faculty of Science, Lebanese University, Lebanon

3 PhD, Department of Biochemistry, Faculty of Science, Lebanese University, Lebanon

4 PhD, Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon

5 PhD, Department of Biochemistry, Faculty of Science, Alexandria University, Egypt

10.31661/jbpe.v0i0.1106

Abstract

Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects.
Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureus, and Staphylococcus epidermis). Antibiotic resistance, motility, metabolic activity and biofilm formation were examined.
Material and Methods: In this case-control study, a Wi-Fi router was used as a source of microwaves and also bacterial cells were exposed to Wi-Fi radiation continuously for 24 and 48 hours. The antibiotic susceptibility was carried out using a disc diffusion method on Müller Hinton agar plates. Motility of Escherichia coli 0157H7 was conducted on motility agar plates. Cell metabolic activity and biofilm formation were performed using 3-(4, 5-Dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and crystal violet quantification, respectively.
Results: The exposure to Wi-Fi radiation altered motility and antibiotic susceptibility of Escherichia coli 0157H7. However, there was no effect Wi-Fi radiation on antibiotic susceptibility of Staphylococcus aureus and Staphylococcus epidermis. On the other hand, the exposed cells, as compared to the unexposed control, showed an increased metabolic activity and biofilm formation ability in Escherichia coli 0157H7, Staphylococcus aureus and Staphylococcus epidermis.
Conclusion: These results proposed that Wi-Fi exposure acted on bacteria in stressful manner by increasing antibiotic resistance and motility of Escherichia coli 0157H7, as well as enhancing biofilm formation by Escherichia coli 0157H7, Staphylococcus aureus and Staphylococcus epidermis. The findings may have implications for the management of serious diseases caused by these infectious bacteria.

Keywords

  1. Ng K-H. Non-ionizing radiations–sources, biological effects, emissions and exposures. Proceedings of the international conference on non-ionizing radiation at UNITEN. 2003:1-16.
  2. Belyaev I. Non-thermal biological effects of microwaves. Microwave Review. 2005;11:13-29.
  3. Ishak NH, Ariffin R, Ali A, Sagiruddin MA, Tawi FMT, editors. Biological effects of WiFi electromagnetic radiation. 25-27 Nov. 2011. Penang: IEEE International Conference on Control System, Computing and Engineering; 2011.
  4. Salmen SH. Non-Thermal Biological Effects of Electromagnetic Field on Bacteria-A Review. Am J Res Commun. 2016;4:16-28.
  5. Cranfield C, Wieser HG, Al Madan J, Dobson J. Preliminary evaluation of nanoscale biogenic magnetite-based ferromagnetic transduction mechanisms for mobile phone bioeffects. IEEE Trans Nanobioscience. 2003;2:40-3. doi: 10.1109/tnb.2003.810155. PubMed PMID: 15382422.
  6. Chang S, Choi J, Gil H, Yang J, Lee E, Jeon Y, et al. Genotoxicity evaluation of electromagnetic fields generated by 835-MHz mobile phone frequency band. Eur J Cancer Prev. 2005;14:175-9. doi: 10.1097/00008469-200504000-00014.
  7. Salmen SH, Alharbi SA, Faden AA, Wainwright M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J Biol Sci. 2018;25:105-10. doi: 10.1016/j.sjbs.2017.07.006. PubMed PMID: 29379365; PubMed Central PMCID: PMC5775109.
  8. Taheri M, Mortazavi SM, Moradi M, Mansouri S, Hatam GR, Nouri F. Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose Response. 2017;15:1559325816688527. doi: 10.1177/1559325816688527. PubMed PMID: 28203122; PubMed Central PMCID: PMC5298474.
  9. Taheri M, Mortazavi S, Moradi M, Mansouri S, Nouri F, Mortazavi S, et al. Klebsiella pneumonia, a microorganism that approves the non-linear responses to antibiotics and window theory after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. J Biomed Phys Eng. 2015;5:115.
  10. Mohd-Zain Z, Mohd-Ismail M, Buniyamin N. Effects of mobile phone generated high frequency electromagnetic field on the viability and biofilm formation of Staphylococcus aureus. World Acad Sci Eng Technol. 2012;70:221-4.
  11. Nakouti I, Hobbs G, Teethaisong Y, Phipps D. A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1. Biotechnol Prog. 2017;33:37-44. doi: 10.1002/btpr.2392. PubMed PMID: 27792273.
  12. March SB, Ratnam S. Sorbitol-MacConkey medium for detection of Escherichia coli 0157:H7 associated with hemorrhagic colitis. J Clin Microbiol. 1986;23:869-72. PubMed PMID: 3519658; PubMed Central PMCID: PMC268739.
  13. Cockerill FR, Wikler MA, Alder J, Dudley M, Eliopoulos G, Ferraro M, et al. Performance standards for antimicrobial susceptibility testing: twenty-second informational supplement. Clinical and Laboratory Standards Institute. 2012;32:M100-S22.
  14. Elmer W, Stephen D, William M, Paul C, Washington C. Color atlas and textbook of diagnostic microbiology. Philadelphia: Lippincott; 1992.
  15. Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82:330-3. doi: 10.1016/j.mimet.2010.06.014.
  16. Saising J, Dube L, Ziebandt AK, Voravuthikunchai SP, Nega M, Gotz F. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2012;56:5804-10. doi: 10.1128/AAC.01296-12. PubMed PMID: 22926575; PubMed Central PMCID: PMC3486563.
  17. Fijalkowski K, Nawrotek P, Struk M, Kordas M, Rakoczy R. The effects of rotating magnetic field on growth rate, cell metabolic activity and biofilm formation by Staphylococcus aureus and Escherichia coli. Journal of Magnetics. 2013;18:289-96. doi: 10.4283/jmag.2013.18.3.289.
  18. Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008;72:157-65. doi: 10.1016/j.mimet.2007.11.010. PubMed PMID: 18155789.
  19. Kwasny SM, Opperman TJ. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol. 2010;50: 13A.8.1-23. doi: 10.1002/0471141755.ph13a08s50. PubMed PMID: 22294365. PubMed Central PMCID: PMC3272335.
  20. Strašák L, Vetterl V, Fojt L. Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn Biol Med. 2005;24:293-300. doi: 10.1080/15368370500379715.
  21. Ayari S, Dussault D, Millette M, Hamdi M, Lacroix M. Changes in membrane fatty acids and murein composition of Bacillus cereus and Salmonella Typhi induced by gamma irradiation treatment. Int J Food Microbiol. 2009;135:1-6. doi: 10.1016/j.ijfoodmicro.2009.07.012. PubMed PMID: 19651456.
  22. Segatore B, Setacci D, Bennato F, Cardigno R, Amicosante G, Iorio R. Evaluations of the Effects of Extremely Low-Frequency Electromagnetic Fields on Growth and Antibiotic Susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol. 2012;2012:587293. doi: 10.1155/2012/587293. PubMed PMID: 22577384; PubMed Central PMCID: PMC3335185.
  23. Chung H, Bang W, Drake M. Stress response of Escherichia coli. Compr Rev Food Sci. Food Saf. 2006;5:52-64.
  24. House B, Kus JV, Prayitno N, Mair R, Que L, Chingcuanco F, et al. Acid-stress-induced changes in enterohaemorrhagic Escherichia coli 0157: H7 virulence. Microbiology. 2009;155:2907-18. doi: 10.1099/mic.0.025171-0. PubMed PMID: 19497950.
  25. Erdem AL, Avelino F, Xicohtencatl-Cortes J, Giron JA. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol. 2007;189:7426-35. doi: 10.1128/JB.00464-07. PubMed PMID: 17693516; PubMed Central PMCID: PMC2168434.