Document Type: Original Research


1 MTech, Assistant Professor, Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

2 MBBS, MS, DNB, Professor, Department of Orthopedics, Kasturba medical college, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

3 PhD, Associate Professor, Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

4 PhD, Professor, Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India



Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, and many advances have been taken in the field which improved the whole procedure. Currently, there is a wide variety of implants available varying in the length of stem, shapes, and sizes.
Material and Methods: In this analytical study of femur, circular, oval, ellipse and trapezoidal-shaped stem designs are considered in the present study. The human femur is modeled using Mimics. CATIA V-6 is used to model the implant models. Static structural analysis is carried out using ANSYS R-19 to evaluate the best implant design.
Results: All the four hip implants exhibited the von Mises stresses, lesser than its yielded strength. However, circular and trapezoidal-shaped stems have less von Mises stress compared to ellipse and oval.
Conclusion: This study shows the behavior of different implant designs when their cross-sections are varied. Further, these implants can be considered for dynamic analysis considering different gait cycles. By optimizing the implant design, life expectancy of the implant can be improved, which will avoid the revision of the hip implant in active adult patients.


  1. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3:S131-9. doi: 10.2215/CJN.04151206. PubMed PMID: 18988698; PubMed Central PMCID: PMCPMC3152283.
  2. Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech. 1995;28:715-24. doi: 10.1016/0021-9290(94)00125-n. PubMed PMID: 7601870.
  3. Pan N. Length of Long Bones and their Proportion to Body Height in Hindus. J Anat. 1924;58:374-8. PubMed PMID: 17104032; PubMed Central PMCID: PMCPMC1249729.
  4. Palastanga N, Field D, Soames R. Anatomy and human movement: structure and function. New York: Elsevier Health Sciences; 2012.
  5. Chethan K, Shenoy BS, Bhat NS. Role of different orthopedic biomaterials on wear of hip joint prosthesis: a review. Materials Today: Proceedings. 2018;5:20827-36. doi: 10.1016/j.matpr.2018.06.468.
  6. Chethan K, Bhat NS, Shenoy BS. Biomechanics of hip joint: A systematic review. International Journal of Engineering and Technology (UAE). 2018;7:1672-6.
  7. Dattani R. Femoral osteolysis following total hip replacement. Postgrad Med J. 2007;83:312-6. doi: 10.1136/pgmj.2006.053215. PubMed PMID: 17488859; PubMed Central PMCID: PMCPMC2600070.
  8. Dowson D. New joints for the Millennium: wear control in total replacement hip joints. Proc Inst Mech Eng H. 2001;215:335-58. doi: 10.1243/0954411011535939. PubMed PMID: 11521758.
  9. Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, et al. Total hip arthroplasties: what are the reasons for revision? Int Orthop. 2008;32:597-604. doi: 10.1007/s00264-007-0364-3. PubMed PMID: 17443324; PubMed Central PMCID: PMCPMC2551710.
  10. Furnes O, Lie SA, Espehaug B, Vollset SE, Engesaeter LB, Havelin LI. Hip disease and the prognosis of total hip replacements. A review of 53,698 primary total hip replacements reported to the Norwegian Arthroplasty Register 1987-99. J Bone Joint Surg Br. 2001;83:579-86. doi: 10.1302/0301-620X.83B4.11223. PubMed PMID: 11380136.
  11. Evans JT, Evans JP, Walker RW, Blom AW, Whitehouse MR, Sayers A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet. 2019;393(10172):647-654. doi: 10.1016/S0140-6736(18)31665-9. PubMed PMID: 30782340; PubMed Central PMCID: PMC6376618.
  12. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials. 1998;19:2297-302. doi: 10.1016/s0142-9612(98)00140-9. PubMed PMID: 9884043.
  13. Sabatini AL, Goswami T. Hip implants VII: Finite element analysis and optimization of cross-sections. Materials & Design. 2008;29:1438-46. doi: 10.1016/j.matdes.2007.09.002.
  14. HQIP. National Joint Registry: 12th Annual Report 2014 Dec. Wales, Northern Ireland and the Isle of Man; 2015.
  15. Colic K, Sedmak A, Grbovic A, Tatic U, Sedmak S, Djordjevic B. Finite element modeling of hip implant static loading. Procedia Engineering. 2016;149:257-62. doi: 10.1016/j.proeng.2016.06.664.
  16. Chalernpon K, Aroonjarattham P, Aroonjarattham K. Static and dynamic load on hip contact of hip prosthesis and Thai femoral bones. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. 2015;9:251-5.
  17. Vulovic A, Filipovic N, editors. Finite Element Analysis of Femoral Implant Under Static Load. 23-25 Oct. 2017. Washington: 17th International Conference on Bioinformatics and Bioengineering (BIBE); 2017.
  18. Colic K, Sedmak A. The current approach to research and design of the artificial hip prosthesis: a review. Rheumatol Orthop Med. 2016;1:1-7. doi: 10.15761/ROM.1000106.
  19. Wang M, Wang M, editors. The finite element analysis of the shape of the femoral head prosthesis on the influence of the hip joint. 19-21 Nov. 2017. Ningbo: IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM); 2017.
  20. Shen FW, Lu Z, McKellop HA. Wear versus thickness and other features of 5-Mrad crosslinked UHMWPE acetabular liners. Clin Orthop Relat Res. 2011;469:395-404. doi: 10.1007/s11999-010-1555-6. PubMed PMID: 20848244; PubMed Central PMCID: PMCPMC3018202.
  21. Keni LG, Kalburgi S, Hameed BZ, Zuber M, Tamagawa M, Shenoy BS. Finite Element Analysis of Urinary Bladder Wall Thickness at Different Pressure Condition. J Mech Med Biol. 2019:1950029. doi: 10.1142/S0219519419500295.
  22. Chethan K, Zuber M, Bhat SN, Shenoy SB. Comparative study of femur bone having different boundary conditions and bone structure using finite element method. Open Biomed Eng J. 2018;12:115-34. doi: 10.2174/1874120701812010115.
  23. Cerveri P, Manzotti A, Baroni G. Patient-specific acetabular shape modelling: comparison among sphere, ellipsoid and conchoid parameterisations. Comput Methods Biomech Biomed Engin. 2014;17:560-7. doi: 10.1080/10255842.2012.702765. PubMed PMID: 22789071.
  24. Radcliffe IA, Prescott P, Man HS, Taylor M. Determination of suitable sample sizes for multi-patient based finite element studies. Med Eng Phys. 2007;29:1065-72. doi: 10.1016/j.medengphy.2006.11.007. PubMed PMID: 17218146.
  25. Dopico-Gonzalez C, New AM, Browne M. Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry. J Biomech. 2010;43:512-20. doi: 10.1016/j.jbiomech.2009.09.039. PubMed PMID: 19896129.
  26. Lee JM, Kim TS, Kim TH. Treatment of Periprosthetic Femoral Fractures Following Hip Arthroplasty. Hip Pelvis. 2018;30:78-85. doi: 10.5371/hp.2018.30.2.78. PubMed PMID: 29896456; PubMed Central PMCID: PMCPMC5990531.
  27. K NC, Zuber M, Bhat NS, Shenoy BS, C RK. Static structural analysis of different stem designs used in total hip arthroplasty using finite element method. Heliyon. 2019;5:e01767. doi: 10.1016/j.heliyon.2019.e01767. PubMed PMID: 31245635; PubMed Central PMCID: PMCPMC6581841.
  28. Bhaskar D, Rajpura A, Board T. Current Concepts in Acetabular Positioning in Total Hip Arthroplasty. Indian J Orthop. 2017;51:386-96. doi: 10.4103/ortho.IJOrtho_144_17. PubMed PMID: 28790467; PubMed Central PMCID: PMCPMC5525519.
  29. ASTM. Standard practice for finite element analysis (FEA) of non-modular metallic orthopaedic hip femoral stems. Philadelphia: ASTM International; 2013.
  30. Reimeringer M, Nuno N, Desmarais-Trepanier C, Lavigne M, Vendittoli PA. The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis. Comput Methods Biomech Biomed Engin. 2013;16:1221-31. doi: 10.1080/10255842.2012.662677. PubMed PMID: 22452543.
  31. Gross S, Abel EW. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech. 2001;34:995-1003. doi: 10.1016/s0021-9290(01)00072-0. PubMed PMID: 11448691.
  32. Sabatini AL, Goswami T. Hip implants VII: Finite element analysis and optimization of cross-sections. Mater Des. 2008;29:1438-46. doi: 10.1016/j.matdes.2007.09.002.
  33. Darwish S, Al-Samhan A. Optimization of artificial hip joint parameters. Materialwissenschaft und Werkstofftechnik. 2009;40:218-23. doi: 10.1002/mawe.200900430.
  34. Kurtz S. The Required Mechanical Properties of Hip and Knee Components. Dexel University and Exponent. 2003:52-7.
  35. Chethan K, Bhat SN, Zuber M, Shenoy SB. Patient-specific static structural analysis of femur bone of different lengths. Open Biomed Eng J. 2018;12:108-14. doi: 10.2174/1874120701812010108.
  36. Pritchett J. Very Large Diameter Polymer Acetabular Liners Show Promising Wear Simulator Results. J Long Term Eff Med Implants. 2016;26:311-9. doi: 10.1615/JLongTermEffMedImplants.2017019182. PubMed PMID: 29199616.
  37. Callaghan JJ, Hennessy DW, Liu SS, Goetz KE, Heiner AD. Cementing acetabular liners into secure cementless shells for polyethylene wear provides durable mid-term fixation. Clin Orthop Relat Res. 2012;470:3142-7. doi: 10.1007/s11999-012-2380-x. PubMed PMID: 22585349; PubMed Central PMCID: PMCPMC3462859.
  38. Johnson AJ, Loving L, Herrera L, Delanois RE, Wang A, Mont MA. Short-term wear evaluation of thin acetabular liners on 36-mm femoral heads. Clin Orthop Relat Res. 2014;472:624-9. doi: 10.1007/s11999-013-3153-x. PubMed PMID: 23861047; PubMed Central PMCID: PMCPMC3890177.