Document Type : Short Communication

Authors

1 Department of Radiation Oncology, Edward Hines Jr VA Hospital, Hines, IL 60141, United States

2 Bevelacqua Resources, Richland, Washington 99352, United States

3 Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

5 Diagnostic Imaging Department, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States

Abstract

Telomere length and stability is a biomarker of aging, stress, and cancer. Shortening of telomeres and high level of DNA damages are known to be associated with aging. Telomere shortening normally occurs during cell division in most cells and when telomeres reach a critically short length, DNA damage signaling and cellular senescence can be triggered. The induction of an adaptive response by space radiation was first documented in 2003. Telomere length alterations are among the most fascinating observations in astronauts and residents of high background radiation areas. While study of the chronic exposure to high levels of background ionizing radiation in Kerala, India failed to show a significant influence on telomere length, limited data about the NASA astronaut Scott Kelly show that exposure to space radiation can induce telomeres to regain length. Interestingly, his telomeres shortened again only a couple of days after returning to Earth. The difference between these situations may be due to the differences in radiation dose, dose-rate, and/or type of radiation. Moreover, Scott Kelly’s spacewalks (EVA) could have significantly increased his cumulative radiation dose. It is worth noting that the spacewalks not only confer a higher dose activity but are also characterized by a different radiation spectrum than inside the space craft since the primary particles would not interact with the vehicle shell to generate secondary radiation. Generally, these differences can possibly indicate the necessity of a minimum dose/dose-rate for induction of adaptive response (the so called Window effect).

Keywords

  1. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95. doi: 10.1067/mcp.2001.113989. PubMed PMID: 11240971.
  2. Das B, Saini D, Seshadri M. Telomere length in human adults and high level natural background radiation. PLoS One. 2009;4:e8440. doi: 10.1371/journal.pone.0008440. PubMed PMID: 20037654; PubMed Central PMCID: PMC2793520.
  3. Keefe DL. Telomeres, Reproductive Aging, and Genomic Instability During Early Development. Reprod Sci. 2016;23:1612-5. doi: 10.1177/1933719116676397. PubMed PMID: 27821557.
  4. NCRP. Operational Radiation Safety Program For Astronauts In Low-Earth Orbit: A Basic Framework. Bethesda: NCRP Report No. 142; 2002.
  5. Bevelacqua JJ. Radiation protection consequences of the emerging space tourism industry. JJ Earth Science. 2017;1:1-11.
  6. Bevelacqua JJ. Health physics in the 21st century: John Wiley & Sons; 2008.
  7. Bevelacqua JJ. Contemporary health physics: problems and solutions: John Wiley & Sons; 2009.
  8. Bevelacqua JJ. Contemporary Health Physics: Problems and Solutions. Medical Physics-New York-Institute of Physics. 1995;22:2123.doi: 10.1118/1.597656.
  9. Bevelacqua JJ. Health physics: radiation-generating devices, characteristics, and hazards: John Wiley & Sons; 2016.
  10. Ramachandran EN, Karuppasamy CV, Kumar VA, Soren DC, Kumar PR, Koya PK, et al. Radio-adaptive response in peripheral blood lymphocytes of individuals residing in high-level natural radiation areas of Kerala in the southwest coast of India. Mutagenesis. 2017;32:267-73. doi: 10.1093/mutage/gew057. PubMed PMID: 27831478.
  11. Ghiassi-nejad M, Mortazavi SM, Cameron JR, Niroomand-rad A, Karam PA. Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys. 2002;82:87-93.doi: 10.1097/00004032-200201000-00011.PubMed PMID: 11769138.
  12. Masoomi JR, Mohammadi S, Amini M, Ghiassi-Nejad M. High background radiation areas of Ramsar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCGE). J Environ Radioact. 2006;86:176-86. doi: 10.1016/j.jenvrad.2005.08.005. PubMed PMID: 16376699.
  13. Mohammadi S, Taghavi-Dehaghani M, Gharaati MR, Masoomi R, Ghiassi-Nejad M. Adaptive response of blood lymphocytes of inhabitants residing in high background radiation areas of ramsar- micronuclei, apoptosis and comet assays. J Radiat Res. 2006;47:279-85.doi: 10.1269/jrr.0575.PubMed PMID: 16988494.
  14. Huff J, Carnell L, Blattnig S, Chappell L, Kerry G, Lumpkins S, et al. Evidence report: risk of radiation carcinogenesis. 2016.
  15. Feinendegen LE. Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol. 2005;78:3-7. doi: 10.1259/bjr/63353075. PubMed PMID: 15673519.
  16. Bhattacharjee D, Ito A. Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. In Vivo. 2001;15:87-92. PubMed PMID: 11286136.
  17. Mortazavi S, Cameron J, Niroomand-Rad A, editors. Is the adaptive response an efficient protection against the detrimental effects of space radiation. International cosmic ray conference; 2003.
  18. Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL. Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res. 2011;176:291-302. doi: 10.1667/rr2646.1.PubMed PMID: 21732791.
  19. Rithidech KN, Lai X, Honikel L, Reungpatthanaphong P, Witzmann FA. Identification of proteins secreted into the medium by human lymphocytes irradiated in vitro with or without adaptive environments. Health Phys. 2012;102:39-53. doi: 10.1097/HP.0b013e31822833af. PubMed PMID: 22134077; PubMed Central PMCID: PMC3744879.
  20. Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, et al. Vive la radioresistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget. 2018;9:14692-722. doi: 10.18632/oncotarget.24461. PubMed PMID: 29581875; PubMed Central PMCID: PMC5865701.
  21. Mortazavi SM, Cameron JR, Niroomand-rad A. Adaptive response studies may help choose astronauts for long-term space travel. Adv Space Res. 2003;31:1543-51.doi: 10.1016/s0273-1177(03)00089-9.PubMed PMID: 12971409.
  22. Iqbal G, Ahmed T. Co-exposure of metals and high fat diet causes aging like neuropathological changes in non-aged mice brain. Brain Res Bull. 2019;147:148-58. doi: 10.1016/j.brainresbull.2019.02.013. PubMed PMID: 30807793.
  23. Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18:595-609. doi: 10.1038/nrm.2017.68. PubMed PMID: 28792007; PubMed Central PMCID: PMC6290461.
  24. Marquez-Ruiz AB, Gonzalez-Herrera L, Valenzuela A. Usefulness of telomere length in DNA from human teeth for age estimation. Int J Legal Med. 2018;132:353-9. doi: 10.1007/s00414-017-1595-5. PubMed PMID: 28439695.
  25. Labat-Robert J, Robert L. Longevity and aging. Mechanisms and perspectives. Pathol Biol (Paris). 2015;63:272-6. doi: 10.1016/j.patbio.2015.08.001. PubMed PMID: 26416405.
  26. Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle. 2014;13:1063-77. doi: 10.4161/cc.28433. PubMed PMID: 24603410; PubMed Central PMCID: PMC4013158.
  27. Vidacek NS, Nanic L, Ravlic S, Sopta M, Geric M, Gajski G, et al. Telomeres, Nutrition, and Longevity: Can We Really Navigate Our Aging? J Gerontol A Biol Sci Med Sci. 2017;73:39-47. doi: 10.1093/gerona/glx082. PubMed PMID: 28510637.
  28. Czepielewski LS, Massuda R, Panizzutti B, da Rosa ED, de Lucena D, Macedo D, et al. Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging. Schizophr Res. 2016;174:39-42. doi: 10.1016/j.schres.2016.04.004. PubMed PMID: 27131910.
  29. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8:45008-19. doi: 10.18632/oncotarget.16726. PubMed PMID: 28410238; PubMed Central PMCID: PMC5546536.
  30. Chilton W, O’Brien B, Charchar F. Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci. 2017;18. doi: 10.3390/ijms18122573. PubMed PMID: 29186077; PubMed Central PMCID: PMC5751176.
  31. Sgura A, Antoccia A, Berardinelli F, Cherubini R, Gerardi S, Zilio C, et al. Telomere length in mammalian cells exposed to low- and high-LET radiations. Radiat Prot Dosimetry. 2006;122:176-9. doi: 10.1093/rpd/ncl478. PubMed PMID: 17223635.
  32. Sharma GG, Hall EJ, Dhar S, Gupta A, Rao PH, Pandita TK. Telomere stability correlates with longevity of human beings exposed to ionizing radiations. Oncol Rep. 2003;10:1733-6.doi:10.3892/or.10.6.1733.PubMed PMID: 14534687.
  33. Das B, Saini D, Seshadri M. No evidence of telomere length attrition in newborns from high level natural background radiation areas in Kerala coast, south west India. Int J Radiat Biol. 2012;88:642-7. doi: 10.3109/09553002.2012.699135. PubMed PMID: 22668000.
  34. Administration NASA. NASA Astronaut Scott Kelly Returns Safely to Earth after One-Year Mission. Washington: NASA; 2016.
  35. Edwards M, Abadie L. NASA Twin Study Confirms Preliminary Findings. National Aeronautics and Space Administration https://www.nasa.gov/feature/nasa-twins-study-confirms-preliminary-findings. 2018.
  36. Chougaonkar M, Eappen K, Ramachandran T, Shetty P, Mayya Y, Sadasivan S, et al. Profiles of doses to the population living in the high background radiation areas in Kerala, India. J Environ Radioact. 2004;71:275-97.doi: 10.1016/s0265-931x(03)00174-7.
  37. Cucinotta FA, Kim MH, Willingham V, George KA. Physical and biological organ dosimetry analysis for international space station astronauts. Radiat Res. 2008;170:127-38. doi: 10.1667/RR1330.1. PubMed PMID: 18582161.