Document Type : Original Research

Authors

Laboratory of Nuclear Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco

Abstract

Purpose: In the last years, some studies investigated dosimetric benefits of a free flattening filter for the photon mode in the radiotherapy field. This study aims to provide a theoretical study published and analysis of basic dosimetric properties for a Saturne 43 Linac head to implement free flattening filter beams clinically.
Material and Methods: This is the first Monte Carlo study for the head of Saturne 43 with replacement flattening filter mode investigating beam dosimetric characteristics, including central axis absorbed doses, beam profiles and photon energy spectra. The later ones were analyzed for flattening filter and replacement flattening filter beams using BEAMnrc and DOSXYZnrc Monte Carlo codes for 10 × 10 cm2, 5 × 5 cm2 and 2 × 2 cm2 square field sizes.
Results: A 3.94-fold increase of dose rate and electron contaminating increased by 246.4 % with the replacement flattening filter mode for field size of 10 × 10 cm2. Reduction was made by replacement flattening filter beam in the peripheral dose up to 30%, and the time was reduced more than 50 %.
Conclusion: Results obtained from our study revealed that some characteristic dosimetries such as the maximum increase in depth dose rate, decrease in out-of-depth dose, and reducing time can be beneficial for the unflattened beam to be used in the radiotherapy for the advanced techniques.

Keywords

  1. Bencheikh M, Maghnouj A, Tajmouati J. Energetic properties’ investigation of removing flattening filter at phantom surface: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code. Physics of Particles and Nuclei Letters. 2017;14:953-62. doi: 10.1134/s1547477117060073.
  2. Bencheikh M, Maghnouj A, Tajmouati J. Photon beam softening coefficients evaluation for a 6 MeV photon beam for an aluminum slab: Monte Carlo study using BEAMnrc Code, DOSXYZnrc Code, and BEAMDP code. Moscow University Physics Bulletin. 2017;72:263-70. doi: 10.3103/s0027134917030043.
  3. Cashmore J, Golubev S, Dumont JL, Sikora M, Alber M, Ramtohul M. Validation of a virtual source model for Monte Carlo dose calculations of a flattening filter free linac. Med Phys. 2012;39:3262-9. doi: 10.1118/1.4709601. PubMed PMID: 22755709.
  4. Hrbacek J, Lang S, Klock S. Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm. Int J Radiat Oncol Biol Phys. 2011;80:1228-37. doi: 10.1016/j.ijrobp.2010.09.050. PubMed PMID: 21129855.
  5. Kry SF, Vassiliev ON, Mohan R. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol. 2010;55:2155-66. doi: 10.1088/0031-9155/55/8/003. PubMed PMID: 20305334.
  6. Xiao Y, Kry SF, Popple R, Yorke E, Papanikolaou N, Stathakis S, et al. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J Appl Clin Med Phys. 2015;16:5219. doi: 10.1120/jacmp.v16i3.5219. PubMed PMID: 26103482; PubMed Central PMCID: PMC5690108.
  7. Tsiamas P, Seco J, Han Z, Bhagwat M, Maddox J, Kappas C, et al. A modification of flattening filter free linac for IMRT. Med Phys. 2011;38:2342-52. doi: 10.1118/1.3571419. PubMed PMID: 21776768.
  8. Zhang DG, Feygelman V, Moros EG, Latifi K, Hoffe S, Frakes J, et al. Superficial and peripheral dose in compensator-based FFF beam IMRT. J Appl Clin Med Phys. 2017;18:151-6. doi: 10.1002/acm2.12018. PubMed PMID: 28291940; PubMed Central PMCID: PMC5689887.
  9. Zwahlen DR, Lang S, Hrbacek J, Glanzmann C, Kloeck S, Najafi Y, et al. The use of photon beams of a flattening filter-free linear accelerator for hypofractionated volumetric modulated arc therapy in localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;83:1655-60. doi: 10.1016/j.ijrobp.2011.10.019. PubMed PMID: 22572080.
  10. Sidek J, Ariff M. Monte Carlo investigations of radiotherapy beams: studies of conventional, stereotactic and unflattened beams. Birmingham: University of Birmingham; 2010.
  11. Georg D, Knoos T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38:1280-93. doi: 10.1118/1.3554643. PubMed PMID: 21520840.
  12. Fogliata A, Garcia R, Knoos T, Nicolini G, Clivio A, Vanetti E, et al. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med Phys. 2012;39:6455-64. doi: 10.1118/1.4754799. PubMed PMID: 23039680.
  13. Kuess P, Georg D, Palmans H, Lechner W. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams. Med Phys. 2016;43:4507. doi: 10.1118/1.4954849. PubMed PMID: 27487867.
  14. Budgell G, Brown K, Cashmore J, Duane S, Frame J, Hardy M, et al. IPEM topical report 1: guidance on implementing flattening filter free (FFF) radiotherapy. Phys Med Biol. 2016;61:8360-94. doi: 10.1088/0031-9155/61/23/8360. PubMed PMID: 27819253.
  15. Radiology IAEAWHOPAHOESoT, ESTRO. OIWP. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standard of Absorbed Dose to Water. Vienna: International Atomic Energy Agency; 2000.
  16. Mesbahi A, Nejad FS. Monte Carlo study on a flattening filter-free 18-MV photon beam of a medical linear accelerator. Radiat Med. 2008;26:331-6. doi: 10.1007/s11604-008-0234-y. PubMed PMID: 18677606.
  17. Mesbahi A. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study. Appl Radiat Isot. 2007;65:1029-36.doi: 10.1016/j.apradiso.2007.04.023.
  18. Javedan K, Feygelman V, Zhang RR, Moros EG, Correa CR, Trotti A, et al. Monte Carlo comparison of superficial dose between flattening filter free and flattened beams. Phys Med. 2014;30:503-8. doi: 10.1016/j.ejmp.2014.03.001. PubMed PMID: 24662096.
  19. Shende R, Gupta G, Patel G, Kumar S. Commissioning of TrueBeamTM medical linear accelerator: quantitative and qualitative dosimetric analysis and comparison of flattening filter (FF) and flattening filter free (FFF) Beam. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2016;5:51-69.doi: 10.4236/ijmpcero.2016.51006.
  20. Meshram MN, Pramanik S, Ranjith CP, Gopal SK, Dobhal R. Dosimetric properties of equivalent-quality flattening filter-free (FFF) and flattened photon beams of Versa HD linear accelerator. J Appl Clin Med Phys. 2016;17:358-70. doi: 10.1120/jacmp.v17i3.6173. PubMed PMID: 27167293; PubMed Central PMCID: PMC5690903.