Document Type: Original Research


1 MSc, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

5 PhD, Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran


Background: Nowadays, it is needed to explore new routes to treat infectious bacterial pathogens due to prevalence of antibiotic-resistant bacteria. Antimicrobial photothermal therapy (PTT), as a new strategy, eradicates pathogenic bacteria.
Objective: In this study, the antimicrobial effects of a carbon nanoparticles-polypyrrole nanocomposite (C-PPy) upon laser irradiation were investigated to destroy the pathogenic gram-negative Pseudomonas aeruginosa.
Material and Methods: In this experimental study, the bacterial cells were incubated with 50, 100 and 250 µg mL-1 concentrations of C-PPy and irradiated with a 808-nm laser at two power densities of 0.5 and 1.0 W cm-2. CFU numbers were counted for the irradiated cells, and compared to an untreated sample (kept in dark). To explore the antibacterial properties and mechanism(s) of C-PPy, temperature increment, reactive oxygen species formation, and protein and DNA leakages were evaluated. Field emission scanning electron microscopy was also employed to investigate morphological changes in the bacterial cell structures.
Results: The results showed that following C-PPy attachment to the bacteria surface, irradiation of near-infrared light resulted in a significant decrement in the bacterial cell viability due to photothermal lysis. Slightly increase in protein leakage and significantly increase intracellular reactive oxygen species (ROS) were observed in the bacteria upon treating with C-PPy.
Conclusion: Photo-ablation strategy is a new minimally invasive and inexpensive method without overdose risk manner for combat with bacteria.


  1. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42-51. doi: 10.1038/nrmicro3380. PubMed PMID: 25435309.
  2. Jia R, Yang D, Xu D, Gu T. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm. Front Microbiol. 2017;8:2335. doi: 10.3389/fmicb.2017.02335. PubMed PMID: 29230206; PubMed Central PMCID: PMC5712129.
  3. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268-81. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed PMID: 21793988.
  4. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58:1133-48. doi: 10.1099/jmm.0.009142-0. PubMed PMID: 19528173.
  5. Breidenstein EB, De la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19:419-26. doi: 10.1016/j.tim.2011.04.005. PubMed PMID: 21664819.
  6. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191-208. doi: 10.2147/NDT.S78182. PubMed PMID: 26346298; PubMed Central PMCID: PMC4552256.
  7. Ferreyra DD, Reynoso E, Cordero P, Spesia MB, Alvarez MG, Milanesio ME, et al. Synthesis and properties of 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl] chlorin as potential broad-spectrum antimicrobial photosensitizers. J Photochem Photobiol B. 2016;158:243-51. doi: 10.1016/j.jphotobiol.2016.02.021. PubMed PMID: 26994333.
  8. Negahdary M, Heli H. Applications of Nanoflowers in Biomedicine. Recent Pat Nanotechnol. 2018;12:22-33. doi: 10.2174/1872210511666170911153428. PubMed PMID: 28901846.
  9. Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International. 2018;44:15596-602. doi: 10.1016/j.ceramint.2018.05.224.
  10. Khatami M, Mortazavi SM, Kishani-Farahani Z, Amini A, Amini E, Heli H. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iran J Biotechnol. 2017;15:95-101. doi: 10.15171/ijb.1436. PubMed PMID: 29845056; PubMed Central PMCID: PMC5811059.
  11. Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013-6. PubMed PMID: 9748157.
  12. Thanou M. Nanoparticles for drug and gene delivery. Encyclopedia of Biophysics. 2013:1686-91. doi: 10.1007/978-3-642-16712-6_709.
  13. Heli H, Rahi A. Synthesis and Applications of Nanoflowers. Recent Pat Nanotechnol. 2016;10:86-115. PubMed PMID: 27502388.
  14. Nazari-Vanani R, Azarpira N, Heli H. Development of self-nanoemulsifying drug delivery systems for oil extracts of Citrus aurantium L. blossoms and Rose damascena and evaluation of anticancer properties. Journal of Drug Delivery Science and Technology. 2018;47:330-6. doi: 10.1016/j.jddst.2018.08.003.
  15. Nazari-Vanani R, Sattarahmady N, Yadegari H, Heli H. A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf B Biointerfaces. 2018;166:245-53. doi: 10.1016/j.colsurfb.2018.03.025. PubMed PMID: 29602079.
  16. Rahi A, Sattarahmady N, Heli H. An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal Biochem. 2016;510:11-7. doi: 10.1016/j.ab.2016.07.012. PubMed PMID: 27423961.
  17. Ajdari M, Tondro G, Sattarahmady N, Parsa A, Heli H. Phytosynthesis of Silver Nanoparticles Using Myrtus communis L. Leaf Extract and Investigation of Bactericidal Activity. Journal of Electronic Materials. 2017;46:6930-5. doi: 10.1007/s11664-017-5784-2.
  18. Khatami M, Heli H, Jahani PM, Azizi H, Nobre MAL. Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. Iet Nanobiotechnology. 2017;11:709-13. doi: 10.1049/iet-nbt.2016.0189.
  19. Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International. 2018;44:15596-602. doi: 10.1016/j.ceramint.2018.05.224.
  20. Negahdary M, Behjati-Ardakani M, Sattarahmady N, Yadegari H, Heli H. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction. Sensors and Actuators B: Chemical. 2017;252:62-71. doi: 10.1016/j.snb.2017.05.149.
  21. Negahdary M, Behjati-Ardakani M, Sattarahmady N, Heli H. An Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction. J Biomed Phys Eng. 2018;8:167-78. PubMed PMID: 29951443; PubMed Central PMCID: PMC6015642.
  22. Heli H. A study of double stranded DNA adsorption on aluminum surface by means of electrochemical impedance spectroscopy. Colloids Surf B Biointerfaces. 2014;116:526-30. doi: 10.1016/j.colsurfb.2014.01.046. PubMed PMID: 24576822.
  23. Mahtab R, Rogers JP, Murphy CJ. Protein-sized quantum dot luminescence can distinguish between” straight”,” bent”, and” kinked” oligonucleotides. J Am Chem Soc. 1995;117:9099-100. doi: 10.1021/ja00140a040.
  24. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344-53. doi: 10.1016/j.biomaterials.2006.07.044.
  25. Heidari M, Sattarahmady N, Javadpour S, Azarpira N, Heli H, Mehdizadeh A, et al. Effect of Magnetic Fluid Hyperthermia on Implanted Melanoma in Mouse Models. Iran J Med Sci. 2016;41:314-21. PubMed PMID: 27365553; PubMed Central PMCID: PMC4912650.
  26. Molday RS, Molday LL. Separation of cells labeled with immunospecific iron dextran microspheres using high gradient magnetic chromatography. FEBS Lett. 1984;170:232-8. PubMed PMID: 6373372.
  27. Sattarahmady N, Heidari M, Zare T, Lotfi M, Heli H. Zinc–Nickel Ferrite Nanoparticles as a Contrast Agent in Magnetic Resonance Imaging. Applied Magnetic Resonance. 2016;47:925-35. doi: 10.1007/s00723-016-0801-9.
  28. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282-9. doi: 10.4103/0975-7406.72127. PubMed PMID: 21180459; PubMed Central PMCID: PMC2996072.
  29. Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N. Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photochem Photobiol B. 2017;166:323-32. doi: 10.1016/j.jphotobiol.2016.12.006. PubMed PMID: 28024283.
  30. Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev. 2013;65:2045-60. doi: 10.1016/j.addr.2013.08.001. PubMed PMID: 23933617; PubMed Central PMCID: PMC3914717.
  31. Juzenas P, Chen W, Sun YP, Coelho MA, Generalov R, Generalova N, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev. 2008;60:1600-14. doi: 10.1016/j.addr.2008.08.004. PubMed PMID: 18840487; PubMed Central PMCID: PMC2695009.
  32. Jang J, Yoon H. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small. 2005;1:1195-9. doi: 10.1002/smll.200500237. PubMed PMID: 17193418.
  33. Vardharajula S, Ali SZ, Tiwari PM, Eroglu E, Vig K, Dennis VA, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine. 2012;7:5361-74. doi: 10.2147/IJN.S35832. PubMed PMID: 23091380; PubMed Central PMCID: PMC3471599.
  34. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5:354-9. doi: 10.1038/nnano.2010.44. PubMed PMID: 20364135.
  35. Akasaka T, Matsuoka M, Hashimoto T, Abe S, Uo M, Watari F. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans. Materials Science and Engineering: B. 2010;173:187-90. doi: 10.1016/j.mseb.2010.01.001.
  36. Au KM, Lu Z, Matcher SJ, Armes SP. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv Mater. 2011;23:5792-5. doi: 10.1002/adma.201103190. PubMed PMID: 22102372.
  37. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater. 2012;24:5586-92. doi: 10.1002/adma.201202625. PubMed PMID: 22907876.
  38. Perez JM, Calderon IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, et al. Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One. 2007;2:e211. doi: 10.1371/journal.pone.0000211. PubMed PMID: 17299591; PubMed Central PMCID: PMC1784070.
  39. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. PubMed PMID: 942051.
  40. Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, De la Guardia M, et al. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Mater Biol Appl. 2017;74:568-81. doi: 10.1016/j.msec.2016.12.125. PubMed PMID: 28254332.
  41. Domingue G, Costerton JW, Brown MR. Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils. FEMS Immunol Med Microbiol. 1996;16:223-8. doi: 10.1111/j.1574-695X.1996.tb00139.x. PubMed PMID: 9116639.
  42. Du C, Wang A, Fei J, Zhao J, Li J. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. Journal of Materials Chemistry B. 2015;3:4539-45. doi: 10.1039/C5TB00560D.
  43. Gao L, Liu R, Gao F, Wang Y, Jiang X, Gao X. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano. 2014;8:7260-71. doi: 10.1021/nn502325j. PubMed PMID: 24992260.
  44. Huang X, Chen G, Pan J, Chen X, Huang N, Wang X, et al. Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. Journal of Materials Chemistry B. 2016;4:6258-70. doi: 10.1039/C6TB01122E.
  45. Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125:15736-7. doi: 10.1021/ja0386905. PubMed PMID: 14677951.
  46. Wang Y-W, Fu Y-Y, Wu L-J, Li J, Yang H-H, Chen G-N. Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. Journal of Materials Chemistry B. 2013;1:2496-501. doi: 10.1039/C3TB20144A.
  47. Vankayala R, Kuo C-L, Sagadevan A, Chen P-H, Chiang C-S, Hwang KC. Morphology dependent photosensitization and formation of singlet oxygen (1 Δ g) by gold and silver nanoparticles and its application in cancer treatment. Journal of Materials Chemistry B. 2013;1:4379-87. doi: 10.1039/C3TB2080.
  48. Vankayala R, Huang YK, Kalluru P, Chiang CS, Hwang KC. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small. 2014;10:1612-22. doi: 10.1002/smll.201302719. PubMed PMID: 24339243.
  49. Fu XJ, Fang Y, Yao M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed Res Int. 2013;2013:159157. doi: 10.1155/2013/159157. PubMed PMID: 23555074; PubMed Central PMCID: PMC3600246.