Document Type : Original Research

Authors

1 MSc, Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

2 MSc, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran

3 PhD, Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

4 PhD, Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran

5 PhD, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Recently, ultrasonic neuromodulation research has been an important and interesting issue. Ultrasonic neuromodulation is possible by the use of low-intensity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. The primary capability of this method is the improvement in the treatment progress of certain neurological and psychiatric disorders noninvasively. tFUS is able to modulate ionic currents and neural depolarization, causing the alteration in electrical properties of neurons.
Objective: The study aims to investigate the effect of tFUS waves on the electrical behavior of neurons using the simulation method.
Material and Methods: In the first part of this simulation study, the propagation of tFUS waves throughout the head was simulated to calculate the value of acoustic pressure at the cortex. In the second part, cortical neurons were simulated by a simple model of spiking neurons proposed by Izhikevich for three common dynamics. Then, the capacitance model was proposed to determine the alteration in the electrical behavior of the neurons during tFUS stimulation.
Results: At the resting state, the electric potential of the neuron’s membrane through the tFUS stimulation has an amplitude of about 30 mv with the similar oscillatory behavior of the acoustic waveform; while,the ultimate electrical behavior of the neuron’s membrane indicates a decrease in the electric potential when the neurons fire.
Conclusion: The electrical behavior of the neuron and the range of its membrane voltage modulated during ultrasonic stimulation. The reduction in the amplitude of membrane potential was observed while neuron spikes.

Keywords

  1. Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol. 2002;47:1219-36. doi: 10.1088/0031-9155/47/8/301. PubMed PMID: 12030552.
  2. Clement GT. Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics. 2004;42:1087-93. doi: 10.1016/j.ultras.2004.04.003. PubMed PMID: 15234170.
  3. Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol. 1998;24:275-83. doi: 10.1016/s0301-5629(97)00269-x. PubMed PMID: 9550186.
  4. Ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol. 2007;93:111-29.
  5. Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng. 2004;6:229-48. doi: 10.1146/annurev.bioeng.6.040803.140126. PubMed PMID: 15255769.
  6. O’Brien Jr WD. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93:212-55. doi: 10.1016/j.pbiomolbio.2006.07.010. PubMed PMID: 16934858. PubMed PMCID: PMC1995002.
  7. Pahk KJ, Mohammad GH, Malago M, Saffari N, Dhar DK. A Novel Approach to Ultrasound-Mediated Tissue Decellularization and Intra-Hepatic Cell Delivery in Rats. Ultrasound Med Biol. 2016;42:1958-67. doi: 10.1016/j.ultrasmedbio.2016.03.020. PubMed PMID: 27184248.
  8. Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, et al. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56:1267-75. doi: 10.1016/j.neuroimage.2011.02.058. PubMed PMID: 21354315. PubMed PMCID: PMC3342684.
  9. Dinno MA, Dyson M, Young SR, Mortimer AJ, Hart J, Crum LA. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys Med Biol. 1989;34:1543-52. doi: 10.1088/0031-9155/34/11/003. PubMed PMID: 2685832.
  10. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68:165. doi: 10.1001/archneurol.2010.260. PubMed PMID: 20937936.PubMed PMCID: PMC4523130.
  11. Jun SB. Ultrasound as a noninvasive neuromodulation tool. Biomed Eng Lett. 2012;2:8-12. doi: 10.1007/s13534-012-0050-2.
  12. Pridmore S, Belmaker R. Transcranial magnetic stimulation in the treatment of psychiatric disorders. Psychiatry Clin Neurosci. 1999;53:541-8. doi: 10.1046/j.1440-1819.1999.00603.x. PubMed PMID: 10595677.
  13. Elahi B, Elahi B, Chen R. Effect of transcranial magnetic stimulation on Parkinson motor function--systematic review of controlled clinical trials. Mov Disord. 2009;24:357-63. doi: 10.1002/mds.22364. PubMed PMID: 18972549.
  14. Alino JJ, Jimenez JL, Flores SC, Alcocer MI. Efficacy of transcranial magnetic stimulation (TMS) in depression: naturalistic study. Actas Esp Psiquiatr. 2010;38:87-93. PubMed PMID: 20976637.
  15. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3:e3511. doi: 10.1371/journal.pone.0003511. PubMed PMID: 18958151. PubMed PMCID: PMC2568804.
  16. Morris CE, Juranka PF. Lipid stress at play: mechanosensitivity of voltage-gated channels. Curr Top Membr. 2007;59:297-338. doi: 10.1016/S1063-5823(06)59011-8. PubMed PMID: 25168141.
  17. Sukharev S, Corey DP. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE. 2004;2004:re4. doi: 10.1126/stke.2192004re4. PubMed PMID: 14872099.
  18. Johns LD. Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train. 2002;37:293-9. PubMed PMID: 16558674. PubMed PMCID: PMC164359.
  19. Treeby BE, Cox BT. K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010;15:021314. doi: 10.1117/1.3360308. PubMed PMID: 20459236.
  20. Von Bertalanffy L. The theory of open systems in physics and biology. Science. 1950;111:23-9. PubMed PMID: 15398815.
  21. GOSS E, Thompson M, Olds S. Behavioral support for systematic desensitization for communication apprehension. Hum Commun Res. 1978;4:158-63. doi: 10.1111/j.1468-2958.1978.tb00605.x.
  22. Robertson JL, Cox BT, Treeby BE, editors. Quantifying numerical errors in the simulation of transcranial ultrasound using pseudospectral methods. IEEE International Ultrasonics Symposium; 2014.
  23. Bear MF, Connors BW, Paradiso MA. Neuroscience. Philadelphia: Lippincott Williams & Wilkins; 2007.
  24. Salehnia M, Ghadiri H. Assessment of a Linear Phased Array Transducer Parameters for Brain Stimulation. Frontiers in Biomedical Technologies. 2017;4:1-17.
  25. Hayner M, Hynynen K. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull. J Acoust Soc Am. 2001;110:3319-30. PubMed PMID: 11785832.
  26. Yin X, Hynynen K. A numerical study of transcranial focused ultrasound beam propagation at low frequency. Phys Med Biol. 2005;50:1821-36. doi: 10.1088/0031-9155/50/8/013. PubMed PMID: 15815098.
  27. Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014;7:900-8. doi: 10.1016/j.brs.2014.08.008. PubMed PMID: 25265863.
  28. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14:1569-72. doi: 10.1109/TNN.2003.820440. PubMed PMID: 18244602.
  29. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251-69. PubMed PMID: 8938025.
  30. Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist. 2011;17:25-36. doi: 10.1177/1073858409348066. PubMed PMID: 20103504.
  31. Juan EJ, Gonzalez R, Albors G, Ward MP, Irazoqui P. Vagus Nerve Modulation Using Focused Pulsed Ultrasound: Potential Applications and Preliminary Observations in a Rat. Int J Imaging Syst Technol. 2014;24:67-71. doi: 10.1002/ima.22080. PubMed PMID: 25165410. PubMed PMCID: PMC4142523.
  32. Sundaram J, Mellein BR, Mitragotri S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J. 2003;84:3087-101. doi: 10.1016/S0006-3495(03)70034-4. PubMed PMID: 12719239. PubMed PMCID: PMC1302870.
  33. Leighton TG. What is ultrasound? Prog Biophys Mol Biol. 2007;93:3-83. doi: 10.1016/j.pbiomolbio.2006.07.026. PubMed PMID: 17045633.