Document Type : Original Research

Authors

1 PhD, Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

2 PhD, Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran

3 PhD, Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

4 PhD, Pharmaceutical Department, Food and Drug Laboratory Research Center, Food and Drug Organization (FDO), Ministry of Health, Tehran, Iran

Abstract

Background: Glucose transporter (Glut), a cellular transmembrane receptor, has a key role in the metabolism of cell glucose and is also associated with various human carcinomas.
Objective: In this study, we evaluated a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic gadolinium oxide (Gd2O3) coated polycyclodextrin (PCD) and modified with glucose (Gd2O3@PCD-Glu) for the targeting of overexpressed glucose receptors.
Material and Methods: In this experimental study, 3T magnetic resonance imaging (MRI) scanner was used to assess the specific interactions between Glut1-overexpressing tumor cells (MDA-MB-231) and Gd2O3@PCD-Glu NPs. Furthermore, the capacity of transporting Gd2O3@PCD-Glu NPs to tumor cells was evaluated.
Results: It was found that the acquired MRI T1 signal intensity of MDA-MB-231 cells that were treated with the Gd2O3@PCD-Glu NPs increased significantly. Based on the results obtained, Gd2O3@PCD-Glu NPs can be applied in targeting Glut1-overexpressing tumor cells in vivo, as well as an MRI-targeted tumor agent to enhance tumor diagnosis.
Conclusion: Results have shown that glucose-shell of magnetic nanoparticles has a key role in diagnosing cancer cells of high metabolic activity.

Keywords

  1. Farhood B, Raei B, Ameri H, Shirvani M, Alizadeh A, Najafi M, et al. A review of incidence and mortality of colorectal, lung, liver, thyroid and bladder cancers in Iran and compared to other countries. Contemp Oncol. 2019;23(1):7. doi: 10.5114/wo.2019.84112. PubMed PMID: 31061631.
  2. Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med. 1995;36:1625-32. PubMed PMID: 7658223.
  3. Haberkorn U, Ziegler SI, Oberdorfer F, Trojan H, Haag D, Peschke P, et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol. 1994;21:827-34. doi: 10.1016/0969-8051(94)90162-7. PubMed PMID: 9234332.
  4. Yang DJ, Kim CG, Schechter NR, Azhdarinia A, Yu DF, Oh CS, et al. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology. 2003;226:465-73. doi: 10.1148/radiol.2262011811. PubMed PMID: 12563141.
  5. Chen Y, Huang ZW, He L, Zheng SL, Li JL, Qin DL. Synthesis and evaluation of a technetium-99m-labeled diethylenetriaminepentaacetate-deoxyglucose complex ([99mTc]-DTPA-DG) as a potential imaging modality for tumors. Appl Radiat Isot. 2006;64:342-7. doi: 10.1016/j.apradiso.2005.08.004. PubMed PMID: 16290170.
  6. Zhang W, Chen Y, Guo DJ, Huang ZW, Cai L, He L. The synthesis of a D-glucosamine contrast agent, Gd-DTPA-DG, and its application in cancer molecular imaging with MRI. Eur J Radiol. 2011;79:369-74. doi: 10.1016/j.ejrad.2010.10.021. PubMed PMID: 21106316.
  7. Cheng Z, Levi J, Xiong Z, Gheysens O, Keren S, Chen X, et al. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjug Chem. 2006;17:662-9. doi: 10.1021/bc050345c. PubMed PMID: 16704203. PubMed PMCID: PMC3191878.
  8. Kovar JL, Volcheck W, Sevick-Muraca E, Simpson MA, Olive DM. Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Anal Biochem. 2009;384:254-62. doi: 10.1016/j.ab.2008.09.050. PubMed PMID: 18938129.PubMed PMCID: PMC2720560.
  9. Shan XH, Hu H, Xiong F, Gu N, Geng XD, Zhu W, et al. Targeting Glut1-overexpressing MDA-MB-231 cells with 2-deoxy-d-g1ucose modified SPIOs. Eur J Radiol. 2012;81:95-9. doi: 10.1016/j.ejrad.2011.03.013.
  10. Cheze-Le Rest C, Metges JP, Teyton P, Jestin-Le Tallec V, Lozac’h P, Volant A, et al. Prognostic value of initial fluorodeoxyglucose-PET in esophageal cancer: a prospective study. Nucl Med Commun. 2008;29:628-35. doi: 10.1097/MNM.0b013e3282f81423. PubMed PMID: 18528185.
  11. Mortezazadeh T, Gholibegloo E, Alam NR, Dehghani S, Haghgoo S, Ghanaati H, et al. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly (β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. MAGMA. 2019:32(4):487-500. doi: 10.1007/s10334-019-00738-2. PubMed PMID: 30730021.
  12. Dehghani S, Alam NR, Shahriarian S, Mortezazadeh T, Haghgoo S, Golmohamadpour A, et al. The effect of size and aspect ratio of Fe-MIL-88B-NH 2 metal-organic frameworks on their relaxivity and contrast enhancement properties in MRI: in vitro and in vivo studies. J Nanoparticle Res. 2018;20(10):278. doi: 10.1007/s11051-018-4376-2.
  13. Gholibegloo E, Mortezazadeh T, Salehian F, Forootanfar H, Firoozpour L, Foroumadi A, et al. Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. Journal of Colloid and Interface Science. 2019;556:128-39. doi:10.1016/j.jcis.2019.08.046.
  14. Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, et al. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol. 2018;44:457-66. doi: 10.1016/j.jddst.2018.01.011.
  15. Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, et al. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc. 2007;129:5076-84. doi: 10.1021/ja068356j. PubMed PMID: 17397154.
  16. Chen X, Zhu J, Chen Z, Xu C, Wang Y, Yao C. A novel bienzyme glucose biosensor based on three-layer Au–Fe3O4@ SiO2 magnetic nanocomposite. Sensors and Actuators B: Chemical. 2011;159:220-8. doi: 10.1016/j.snb.2011.06.076.
  17. Gholibegloo E, Mortezazadeh T, Salehian F, Ramazani A, Amanlou M, Khoobi M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr Polym. 2019;213:70-8. doi: 10.1016/j.jddst.2018.01.011.
  18. Fulton DA, Elemento EM, Aime S, Chaabane L, Botta M, Parker D. Glycoconjugates of gadolinium complexes for MRI applications. Chem Commun (Camb). 2006:1064-6. doi: 10.1039/b517997a. PubMed PMID: 16514440.
  19. Parker D, Dickins RS, Puschmann H, Crossland C, Howard JA. Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev. 2002;102:1977-2010. doi: 10.1021/cr010452+. PubMed PMID: 12059260.
  20. Alauddin MM, Louie AY, Shahinian A, Meade TJ, Conti PS. Receptor mediated uptake of a radiolabeled contrast agent sensitive to beta-galactosidase activity. Nucl Med Biol. 2003;30:261-5. PubMed PMID: 12745017.
  21. Duarte MG, Gil MH, Peters JA, Colet JM, Elst LV, Muller RN, et al. Synthesis, characterization, and relaxivity of two linear Gd(DTPA)-polymer conjugates. Bioconjug Chem. 2001;12:170-7. doi: 10.1021/bc000065r. PubMed PMID: 11312677.
  22. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, et al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials. 2013;34:8382-92. doi: 10.1016/j.biomaterials.2013.07.070. PubMed PMID: 23932250.
  23. Daryasari MP, Akhgar MR, Mamashli F, Bigdeli B, Khoobi M. Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. Rsc Advances. 2016;6:105578-88. doi: 10.1039/c6ra23182a.
  24. Zhang P, Hu L, Yin Q, Zhang Z, Feng L, Li Y. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. J Control Release. 2012;159:429-34. doi: 10.1016/j.jconrel.2012.01.031. PubMed PMID: 22306333.
  25. Azizian G, Riyahi-Alam N, Haghgoo S, Moghimi HR, Zohdiaghdam R, Rafiei B, et al. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging. Nanoscale Res Lett. 2012;7:549. doi: 10.1186/1556-276X-7-549. PubMed PMID: 23033866. PubMed PMCID: PMC3499173.
  26. Ahmad MW, Xu W, Kim SJ, Baeck JS, Chang Y, Bae JE, et al. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci Rep. 2015;5:8549. doi: 10.1038/srep08549. PubMed PMID: 25707374. PubMed PMCID: PMC4338476.
  27. Van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv. 2006;3:205-16. doi: 10.1517/17425247.3.2.205. PubMed PMID: 16506948.
  28. Puech PA, Boussel L, Belfkih S, Lemaitre L, Douek P, Beuscart R. DicomWorks: software for reviewing DICOM studies and promoting low-cost teleradiology. J Digit Imaging. 2007;20:122-30. doi: 10.1007/s10278-007-9018-7. PubMed PMID: 17333414. PubMed PMCID: PMC3043902.
  29. Kalender W. Classic papers in modern diagnostic radiology. Springer Science & Business Media; 2004.
  30. Ardestani MS, Arabzadeh AJ, Heidari Z, Hosseinzadeh A, Ebrahimi H, Hashemi E, et al. Novel and facile methods for the synthesis of DTPA-mono-amide: a new completely revised strategy in radiopharmaceutical chemistry. Journal of radioanalytical and nuclear chemistry. 2010;283:447-55.
  31. Heydarnezhadi S, Alam NR, Haghgoo S, Ghanaati H, Khoobi M, Gorji E, et al. Glycosylated Gadolinium as Potential Metabolic Contrast Agent vs Gd-DTPA for Metabolism of Tumor Tissue in Magnetic Resonance Imaging. Applied Magnetic Resonance. 2016;47:375-85. doi: 10.1007/s00723-015-0756-2.
  32. Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano letters. 2002;2:979-82. doi: 10.1021/nl025604a.
  33. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9:1521-32. doi: 10.1002/smll.201201390. PubMed PMID: 23019091.
  34. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical Journal of Pharmaceutical Research. 2013;12:265-73. doi: 10.4314/tjpr.v12i2.20.
  35. Sarmento B, Mazzaglia D, Bonferoni MC, Neto AP, Do Céu Monteiro M, Seabra V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydrate polymers. 2011;84:919-25. doi: 10.1016/j.carbpol.2010.12.042.
  36. Akrami M, Khoobi M, Khalilvand-Sedagheh M, Haririan I, Bahador A, Faramarzi MA, et al. Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Advances. 2015;5:88096-107. doi: 10.1039/c5ra13838h.
  37. Kumar S, Meena VK, Hazari PP, Sharma RK. FITC-Dextran entrapped and silica coated gadolinium oxide nanoparticles for synchronous optical and magnetic resonance imaging applications. Int J Pharm. 2016;506:242-52. doi: 10.1016/j.ijpharm.2016.03.040. PubMed PMID: 27032564.
  38. Tarasi R, Khoobi M, Niknejad H, Ramazani A, Ma’mani L, Bahadorikhalili S, et al. β-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe 3 O 4 magnetic nanoparticles: A novel biocompatible nanocomposite for targeted docetaxel delivery. Journal of Magnetism and Magnetic Materials. 2016;417:451-9. doi: 10.1016/j.jmmm.2016.05.080.
  39. Liu Y, Yang P, Wang W, Dong H, Lin J. Fabrication and photoluminescence properties of hollow Gd 2 O 3: Ln (Ln= Eu3+, Sm3+) spheres via a sacrificial template method. CrystEngComm. 2010;12:3717-23. doi: 10.1039/c0ce00145g.
  40. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5:487-95. doi: 10.1021/mp800032f. PubMed PMID: 18510338.PubMed PMCID: PMC2613572.
  41. Yim H, Yang SG, Jeon YS, Park IS, Kim M, Lee DH, et al. The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials. 2011;32:5187-94. doi: 10.1016/j.biomaterials.2011.03.069. PubMed PMID: 21561660.
  42. Werner EJ, Datta A, Jocher CJ, Raymond KN. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed Engl. 2008;47:8568-80. doi: 10.1002/anie.200800212. PubMed PMID: 18825758.
  43. Lew S, Brooks MV. Nephrogenic systemic fibrosis: clinical review and education for nurse practitioners. The Journal for Nurse Practitioners. 2009;5:344-9. doi: 10.1016/j.nurpra.2008.10.011.
  44. Fang J, Chandrasekharan P, Liu X-L, Yang Y, Lv Y-B, Yang C-T, et al. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials. 2014;35:1636-42. doi: 10.1016/j.biomaterials.2013.11.032.
  45. Chen KJ, Wolahan SM, Wang H, Hsu CH, Chang HW, Durazo A, et al. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity. Biomaterials. 2011;32:2160-5. doi: 10.1016/j.biomaterials.2010.11.043. PubMed PMID: 21167594. PubMed PMCID: PMC3032383.
  46. Cheng Z, Thorek DL, Tsourkas A. Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew Chem Int Ed Engl. 2010;49:346-50. doi: 10.1002/anie.200905133. PubMed PMID: 19967688. PubMed PMCID: PMC2862691.
  47. Cheng Z, Thorek DL, Tsourkas A. Porous Polymersomes with Encapsulated Gd-labeled Dendrimers as Highly Efficient MRI Contrast Agents. Adv Funct Mater. 2009;19:3753-9. doi: 10.1002/adfm.200901253. PubMed PMID: 23293575. PubMed PMCID: PMC3536029.
  48. Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, et al. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One. 2011;6:e23205. doi: 10.1371/journal.pone.0023205. PubMed PMID: 21826239. PubMed PMCID: PMC3149640.