Document Type: Original Research

Authors

1 MSc, Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran

2 MSc, Department of Radiology, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran

3 PhD, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4 PhD, Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

5 PhD, Department of Radiology, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Background: Magnetic resonance imaging (MRI) using nanostructures has been a proper method for tumor targeting purposes. Different MRI nanomaterials, targeting agents and anticancer drugs have been used for targeting of tumors.
Objectives: This study aims to consider the MRI property of doxorubicin (DOX)-loaded gadolinium/13X zeolite/folic acid (Gd3+/13X/FA) nanocomposite.
Material and Methods: In this in vitro study, Gd3+/13X/FA/DOX nanocomposite was prepared and the X-ray diffraction, scanning electron microscopy and MTT assay were conducted to evaluate the physicochemical properties of the nanocomposite. MRI was performed at 25°C using a 1.5 T clinical system to determine the T1 relaxation times and subsequently, the T1 relaxivity.
Results: The size of the nanocomposite was in the range of 80-200 nm. The nanocomposite without DOX loading (Gd3+/13X/FA) showed compatibility for A549 cells for all concentrations while DOX-loaded nanocomposite was toxic for 62% of the cells at the concentration of 0.4 mg/ml. The T1 relaxivity of Gd3+/13X/FA/DOX nanocomposite was 4.0401 mM-1s-1.
Conclusion: Gd3+/13X/FA/DOX nanocomposite shows a T1 relaxivity similar to the conventional gadolinium chelates, and a successful DOX loading.

Keywords

  1. Oghabian MA, Guiti M, Haddad P, Gharehaghaji N, Saber R, Alam NR, et al. Detection sensitivity of MRI using ultra-small super paramagnetic iron oxide nano-particles (USPIO) in biological tissues. Conf Proc IEEE Eng Med Biol Soc. 2006;5625-6. doi: 10.1109/IEMBS.2006.260131. PubMed PMID: 17945909.
  2. Lutz AM, Weishaupt D, Persohn E, Goepfert K, Froehlich J, Sasse B, et al. Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics. Radiology. 2005;234(3):765-75. doi: 10.1148/radiol.2343031172. PubMed PMID: 15665219.
  3. Saharkhiz H, Gharehaghaji N, Nazarpoor M, Mesbahi A, Pourissa M. The Effect of Inversion Time on the Relationship Between Iron Oxide Nanoparticles Concentration and Signal Intensity in T1-Weighted MR Images. Iran J Radiol. 2014;11(2):e12667. doi: 10.5812/iranjradiol.12667. PubMed PMID: 25035696. PubMed PMCID: PMC4090637.
  4. Ren L, Chen S, Li H, Zhang Z, Zhong J, Liu M, et al. MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater. 2016;35:260-8. doi: 10.1016/j.actbio.2016.02.011. PubMed PMID: 26873364.
  5. Ma Z, Wan H, Wang W, Zhang X, Uno T, Yang Q, et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Research. 2019;12(2):273-9. doi: 10.1007/s12274-018-2210-x. PubMed PMID: 31832124. PubMed PMCID: PMC6907162.
  6. Inozemtseva OA, German SV, Navolokin NA, Bucharskaya AB, Maslyakova GN, Gorin DA. Encapsulated magnetite nanoparticles: preparation and application as multifunctional tool for drug delivery systems. Nanotechnology and Biosensors. 2018;175-192. doi: 10.1016/B978-0-12-813855-7.00006-4.
  7. Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today (Kidlington). 2011;14:330-8. doi: 10.1016/S1369-7021(11)70163-8. PubMed PMID: 22389583. PubMed PMCID: PMC3290401
  8. Yang CT, Padmanabhan P, Gulyás BZ. Gadolinium (iii) based nanoparticles for T 1-weighted magnetic resonance imaging probes. RSC Advances. 2016;6(65):60945-66. doi: 10.1039/C6RA07782J.
  9. Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, et al. Gadolinium (III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. The Journal of Physical Chemistry B. 2004;108(40):15608-11. doi: 10.1021/jp047829a.
  10. Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A. 2006;78(3):550-7. doi: 10.1002/jbm.a.30781. PubMed PMID: 16736484.
  11. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89(11):1452-64. dio: 10.1002/1520-6017(200011)89:113.0.co;2-p. PubMed PMID: 11015690.
  12. Babayevska N, Florczak P, Woźniak-Budych M, Jarek M, Nowaczyk G, Zalewski T, et al. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI. Applied Surface Science. 2017;404:129-37. doi: 10.1016/j.apsusc.2017.01.274.
  13. Shen X, Li T, Chen Z, Geng Y, Xie X, Li S, et al. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics. Int J Nanomedicine. 2017;12:4299. doi: 10.2147/IJN.S136766. PubMed PMID: 28652734. PubMed PMCID: PMC5473604.
  14. Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790-810. doi: 10.1039/C7SC04004K. PubMed PMID: 29675145.PubMed PMCID: PMC5890329.
  15. Zhang G, Gao J, Qian J, Zhang L, Zheng K, Zhong K, et al. Hydroxylated mesoporous nanosilica coated by polyethylenimine coupled with gadolinium and folic acid: a tumor-targeted T1 magnetic resonance contrast agent and drug delivery system. ACS Appl Mater Interfaces. 2015;7(26):14192-200. doi: 10.1021/acsami.5b04294. PubMed PMID: 26084052.
  16. Shin J, Jo D, Hong SB. Rediscovery of the importance of inorganic synthesis parameters in the search for new zeolites. AAcc Chem Res. 2019;52(5):1419-1427. doi: 10.1021/acs.accounts.9b00073. PubMed PMID: 31013053.
  17. Li Y, Li L, Yu J. Applications of zeolites in sustainable chemistry. Chem. 2017;3(6):928-49. doi: 10.1016/j.chempr.2017.10.009.
  18. Bresinska I, Balkus KJ. Studies of Gd (III)-exchanged Y-type zeolites relevant to magnetic resonance imaging. J Phys Chem. 1994;98(49):12989-94. doi: 10.1021/j100100a029.
  19. Csajbók É, Bányai I, Vander Elst L, Muller RN, Zhou W, Peters JA. Gadolinium (III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: Relationship between structure and relaxivity. Chemistry. 2005;11(16):4799-807. doi: 10.1002/chem.200500039. PubMed PMID: 15929138.
  20. Mesgari-Shadi A, Sarrafzadeh MH, Divband B, Barar J, Omidi Y. Batch adsorption/desorption for purification of scfv antibodies using nanozeolite microspheres. Microporous and Mesoporous Materials. 2018;264:167-75. doi: 10.1016/j.micromeso.2018.01.028.
  21. Anbia M, Aghaei M. Study of the effect of organic binders on 13X zeolite agglomeration and their CO2 adsorption properties. Scientia Iranica. 2019;26(3):1497-504. doi: 10.24200/sci.2018.21198.