Document Type: Technical Note


1 PhD, Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

2 PhD, Researcher in International University of Health and Welfare, Japan, Tokyo

3 PhD, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

4 PhD, International University of Health and Welfare, Tokyo, Japan


Ankle-foot orthoses (AFOs) have been described to have positive effects on the gait biomechanics in stroke patients. The plantarflexion resistance of an AFO is considered important for hemiplegic patients, but the evidence is still limited. The purpose of this case series was to design and evaluate the immediate effect of an articulated AFO on kinematics and kinetics of lower-limb joints in stroke patients. The articulated AFO with the adjustment of plantarflexion resistance was designed. The spring generates a plantarflexion resistance of the ankle joint at initial stance phase. The efficacy of orthosis was evaluated on two stroke patients in 2 conditions: without an AFO and with the AFO. Results showed the immediate improvements for walking speed, stride length and angular changes of dorsiflexion of the paretic ankle joint during a gait cycle of both subjects using the AFO compared with barefoot walking. The AFO also was able to reduce the paretic knee extension in the single-support phase of the stance and increase the vertical COM displacement during stance phase on the affected leg. In conclusion, the designed AFO affect not only the movement of the ankle joint but also the movements of the knee joint and the vertical COM height. These changes indicate improvement of the first and the second rockers and swing phase gait but not third rocker function. Further investigation is recently underway to compare its effect compared with other AFOs on the gait parameters of hemiplegic patients. 


  1. Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4:136-48. doi: 10.1016/0966-6362(96)01063-6.
  2. Kim CM, Eng JJ. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture. 2004;20:140-6. doi: 10.1016/j.gaitpost.2003.07.002. PubMed PMID: 15336283. PubMed PMCID: PMC3167865.
  3. Ferreira LA, Neto HP, Grecco LA, Christovao TC, Duarte NA, Lazzari RD, et al. Effect of Ankle-foot Orthosis on Gait Velocity and Cadence of Stroke Patients: A Systematic Review. J Phys Ther Sci. 2013;25:1503-8. doi: 10.1589/jpts.25.1503. PubMed PMID: 24396220. PubMed PMCID: PMC3881487.
  4. Tyson S, Sadeghi-Demneh E, Nester C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin Rehabil. 2013;27:879-91. doi: 10.1177/0269215513486497.
  5. Daryabor A, Arazpour M, Aminian G. Effect of different designs of ankle-foot orthoses on gait in patients with stroke: A systematic review. Gait Posture. 2018;62:268-79. doi: 10.1016/j.gaitpost.2018.03.026. PubMed PMID: 29587246.
  6. Bleyenheuft C, Caty G, Lejeune T, Detrembleur C. Assessment of the Chignon dynamic ankle-foot orthosis using instrumented gait analysis in hemiparetic adults. Ann Readapt Med Phys. 2008;51:147-53. doi: 10.1016/j.annrmp.2007.12.006. PubMed PMID: 18242754.
  7. Mulroy SJ, Eberly VJ, Gronely JK, Weiss W, Newsam CJ. Effect of AFO design on walking after stroke: impact of ankle plantar flexion contracture. Prosthet Orthot Int. 2010;34:277-92. doi: 10.3109/03093646.2010.501512. PubMed PMID: 20738232.
  8. De Seze MP, Bonhomme C, Daviet JC, Burguete E, Machat H, Rousseaux M, et al. Effect of early compensation of distal motor deficiency by the Chignon ankle-foot orthosis on gait in hemiplegic patients: a randomized pilot study. Clin Rehabil. 2011;25:989-98. doi: 10.1177/0269215511410730. PubMed PMID: 21750010.
  9. Alam M, Choudhury IA, Bin Mamat A. Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. Scientific World Journal. 2014;2014:867869. doi: 10.1155/2014/867869. PubMed PMID: 24892102. PubMed PMCID: PMC4032669.
  10. Yamamoto S, Hagiwara A, Mizobe T, Yokoyama O, Yasui T. Gait improvement of hemiplegic patients using an ankle-foot orthosis with assistance of heel rocker function. Prosthet Orthot Int. 2009;33:307-23. doi: 10.3109/03093640903176563. PubMed PMID: 19961292.
  11. Nolan KJ, Yarossi M. Preservation of the first rocker is related to increases in gait speed in individuals with hemiplegia and AFO. Clin Biomech (Bristol, Avon). 2011;26:655-60. doi: 10.1016/j.clinbiomech.2011.03.011. PubMed PMID: 21550702.
  12. Yamamoto S, Hagiwara A, Mizobe T, Yokoyama O, Yasui T. Development of an ankle-foot orthosis with an oil damper. Prosthet Orthot Int. 2005;29:209-19. doi: 10.1080/03093640500199455. PubMed PMID: 16466151.
  13. Kobayashi T, Singer ML, Orendurff MS, Gao F, Daly WK, Foreman KB. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke. Clin Biomech (Bristol, Avon). 2015;30:775-80. doi: 10.1016/j.clinbiomech.2015.06.014. PubMed PMID: 26149007. PubMed PMCID: PMC4568124.
  14. Yamamoto S, Tomokiyo N, Yasui T, Kawaguchi T. Effects of plantar flexion resistive moment generated by an ankle-foot orthosis with an oil damper on the gait of stroke patients: a pilot study. Prosthet Orthot Int. 2013;37:212-21. doi: 10.1177/0309364612460266. PubMed PMID: 23075466.
  15. Kobayashi T, Orendurff MS, Singer ML, Gao F, Daly WK, Foreman KB. Reduction of genu recurvatum through adjustment of plantarflexion resistance of an articulated ankle-foot orthosis in individuals post-stroke. Clin Biomech (Bristol, Avon). 2016;35:81-5. doi: 10.1016/j.clinbiomech.2016.04.011. PubMed PMID: 27136122.PubMed PMCID: PMC4885750.
  16. Hesse S, Werner C, Matthias K, Stephen K, Berteanu M. Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity. Stroke. 1999;30:1855-61. doi: 10.1161/01.str.30.9.1855. PubMed PMID: 10471436.
  17. Yamamoto S, Ebina M, Miyazaki S, Kawai H, Kubota T. Development of a new ankle-foot orthosis with dorsiflexion assist, part 1: desirable characteristics of ankle-foot orthoses for hemiplegic patients. JPO: Journal of Prosthetics and Orthotics. 1997;9:174-9.
  18. Roche AF, Sievogel R, Chumlea WC, Webb P. Grading body fatness from limited anthropometric data. The American journal of clinical nutrition. 1981;34(12):2831-8.
  19. Yoshio Y. Extra super duralumin and successive aluminum alloys for aircraft. J Jpn Inst Light Met. 2015;39:379.
  20. Winter DA. Biomechanics and motor control of human movement. 4th ed. New Jersey: John Wiley & Sons; 2009. p. 1-13.
  21. Yokoyama O, Sashika H, Hagiwara A, Yamamoto S, Yasui T. Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: a case series of 2 patients with hemiplegia. Arch Phys Med Rehabil. 2005;86:162-6. doi: 10.1016/j.apmr.2003.11.026. PubMed PMID: 15641008.
  22. Gordon KE, Ferris DP, Kuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90:136-44. doi: 10.1016/j.apmr.2008.07.014. PubMed PMID: 19154840.
  23. Massaad F, Lejeune TM, Detrembleur C. Reducing the energy cost of hemiparetic gait using center of mass feedback: a pilot study. Neurorehabil Neural Repair. 2010;24:338-47. doi: 10.1177/1545968309349927. PubMed PMID: 19890020.
  24. Lin YC, Gfoehler M, Pandy MG. Quantitative evaluation of the major determinants of human gait. J Biomech. 2014;47:1324-31. doi: 10.1016/j.jbiomech.2014.02.002. PubMed PMID: 24582352.
  25. Stanhope VA, Knarr BA, Reisman DS, Higginson JS. Frontal plane compensatory strategies associated with self-selected walking speed in individuals post-stroke. Clin Biomech (Bristol, Avon). 2014;29:518-22. doi: 10.1016/j.clinbiomech.2014.03.013. PubMed PMID: 24768223; PubMed PMCID: PMC4367535.
  26. Matsuda F, Mukaino M, Ohtsuka K, Tanikawa H, Tsuchiyama K, Teranishi T, et al. Analysis of strategies used by hemiplegic stroke patients to achieve toe clearance. Japanese Journal of Comprehensive Rehabilitation Science. 2016;7:111-8.
  27. Yamamoto S, Fuchi M, Yasui T. Change of rocker function in the gait of stroke patients using an ankle foot orthosis with an oil damper: immediate changes and the short-term effects. Prosthet Orthot Int. 2011;35:350-9. doi: 10.1177/0309364611420200. PubMed PMID: 21948737.
  28. Bregman DJ, Harlaar J, Meskers CG, De Groot V. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work. Gait Posture. 2012;35:148-53. doi: 10.1016/j.gaitpost.2011.08.026. PubMed PMID: 22050974.
  29. Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, et al. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait Posture. 2006;24:142-51. doi: 10.1016/j.gaitpost.2006.08.003. PubMed PMID: 16934470.
  30. Ounpuu S, Bell KJ, Davis 3rd RB, DeLuca PA. An evaluation of the posterior leaf spring orthosis using joint kinematics and kinetics. J Pediatr Orthop. 1996;16:378-84. doi: 10.1097/00004694-199605000-00017. PubMed PMID: 8728642.
  31. Forghany S, Nester CJ, Richards B. The effect of rollover footwear on the rollover function of walking. J Foot Ankle Res. 2013;6:24. doi: 10.1186/1757-1146-6-24. PubMed PMID: 23835206. PubMed PMCID: PMC3710509.
  32. Hsu JD, Michael J, Fisk J. AAOS Atlas of Orthoses and Assistive Devices. 4th Edition. Mosby: Elsevier Health Sciences; 2008.