Document Type : Original Research

Authors

1 MSc, Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

2 MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 MSc, NanoBioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran

4 PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important.
Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein).
Material and Methods: In this experimental study, fibroin was extracted from bombyx mori silk cocoon, and the concentration was obtained by Bradford method. The protein was incubated in a wide range of times (0 min to 7 days) in specific acidity and thermal conditions (pH=1.6, T=70 °C). The assays of UV-vis spectroscopy with congo red, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy and circular dichroism spectroscopy were employed to monitor the fibrillation process.
Results: Fibroin assemblies were formed upon the process of aggregation and fibril formation with a variety of morphology ranging from nanoparticles to elongated fibrils.
Conclusion: The results showed progressive pathway of fibril formation.

Keywords

  1. BioNinja [Internet]. Fibrous vs Globular Proteins. Available from: http://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/24-proteins/fibrous-vs-globular-protein.html
  2. Zerovnik E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur J Biochem. 2002;269:3362-71. PubMed PMID: 12135474.
  3. Lee CF. Self-assembly of protein amyloids: a competition between amorphous and ordered aggregation. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80:031922. doi: 10.1103/PhysRevE.80.031922. PubMed PMID: 19905161.
  4. Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods. 2004;34:151-60. doi: 10.1016/j.ymeth.2004.03.012. PubMed PMID: 15283924.
  5. Morris AM, Watzky MA, Agar JN, Finke RG. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham’s Razor” model: The Finke− Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry. 2008;47:2413-27. doi: 10.1021/bi701899y.
  6. Rambaran RN, Serpell LC. Amyloid fibrils: abnormal protein assembly. Prion. 2008;2:112-7. doi: 10.4161/pri.2.3.7488. PubMed PMID: 19158505. PubMed PMCID: PMC2634529.
  7. Ohnishi S, Takano K. Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci. 2004;61:511-24. doi: 10.1007/s00018-003-3264-8. PubMed PMID: 15004691.
  8. Rochet JC, Lansbury Jr PT. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol. 2000;10:60-8. doi: 10.1016/s0959-440x(99)00049-4. PubMed PMID: 10679462.
  9. Jansen R, Dzwolak W, Winter R. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J. 2005;88:1344-53. doi: 10.1529/biophysj.104.048843. PubMed PMID: 15574704.PubMed PMCID: PMC1305136.
  10. Murphy RM. Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochim Biophys Acta. 2007;1768:1923-34. doi: 10.1016/j.bbamem.2006.12.014. PubMed PMID: 17292851.
  11. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 2000;289:1317-21. doi: 10.1126/science.289.5483.1317. PubMed PMID: 10958771.
  12. Toyama BH, Weissman JS. Amyloid structure: conformational diversity and consequences. Annu Rev Biochem. 2011;80:557-85. doi: 10.1146/annurev-biochem-090908-120656. PubMed PMID: 21456964. PubMed PMCID: PMC3817101.
  13. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333-66. doi: 10.1146/annurev.biochem.75.101304.123901. PubMed PMID: 16756495.
  14. Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5:15-22. doi: 10.1038/nchembio.131. PubMed PMID: 19088715.
  15. Lee CC, Sun Y, Huang HW. How type II diabetes-related islet amyloid polypeptide damages lipid bilayers. Biophys J. 2012;102:1059-68. doi: 10.1016/j.bpj.2012.01.039. PubMed PMID: 22404928. PubMed PMCID: PMC3296043.
  16. Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett. 2013;587:1119-27. doi: 10.1016/j.febslet.2013.01.017. PubMed PMID: 23337872.PubMed PMCID: PMC4557799.
  17. Ohnishi S, Takano K. Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci. 2004;61:511-24. doi: 10.1007/s00018-003-3264-8. PubMed PMID: 15004691.
  18. Sattarahmady N, Heli H, Moosavi-Movahedi AA, Karimian K. Deferiprone: structural and functional modulating agent of hemoglobin fructation. Mol Biol Rep. 2014;41:1723-9. doi: 10.1007/s11033-014-3021-0. PubMed PMID: 24415298.
  19. Sattarahmady N, Heli H, Moosavi-Movahedi AA. Desferal as improving agent for hemoglobin fructation: structural and functional impacts. Protein J. 2012;31:651-5. doi: 10.1007/s10930-012-9444-3. PubMed PMID: 23011645.
  20. Sattarahmady N, Khodagholi F, Moosavi-Movahedi AA, Heli H, Hakimelahi GH. Alginate as an antiglycating agent for human serum albumin. Int J Biol Macromol. 2007;41:180-4. doi: 10.1016/j.ijbiomac.2007.01.015. PubMed PMID: 17350677.
  21. Whittingham JL, Scott DJ, Chance K, Wilson A, Finch J, Brange J, et al. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation. J Mol Biol. 2002;318:479-90. doi: 10.1016/S0022-2836(02)00021-9. PubMed PMID: 12051853.
  22. Wang SS, Liu KN, Han TC. Amyloid fibrillation and cytotoxicity of insulin are inhibited by the amphiphilic surfactants. Biochim Biophys Acta. 2010;1802:519-30. doi: 10.1016/j.bbadis.2010.02.008. PubMed PMID: 20176106.
  23. Divry P. Surles proprietes optiques de 1’amyloide. crsoc Bilge Biol. 1927;97:1808-10.
  24. Takai E, Ohashi G, Ueki R, Yamada Y, Fujita J-I, Shiraki K. Scanning electron microscope imaging of amyloid fibrils. American Journal of Biochemistry & Biotechnology. 2014;10:31-39. doi: 10.3844/ajbbsp.2014.31.39.
  25. Cohen AS, Calkins E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature. 1959;183:1202-3. doi: 10.1038/1831202a0. PubMed PMID: 13657054.
  26. Stine WB, Snyder SW, Ladror US, Wade WS, Miller MF, Perun TJ, et al. The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. J Protein Chem. 1996;15:193-203. PubMed PMID: 8924204.
  27. Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z, et al. Amyloid fibril structure of alpha-synuclein determined by cryo-electron microscopy. Cell Res. 2018;28:897-903. doi: 10.1038/s41422-018-0075-x. PubMed PMID: 30065316. PubMed PMCID: PMC6123497.
  28. Zurdo J, Guijarro JI, Dobson CM. Preparation and characterization of purified amyloid fibrils. J Am Chem Soc. 2001;123:8141-2. doi: 10.1021/ja016229b. PubMed PMID: 11506581.
  29. Eanes ED, Glenner GG. X-ray diffraction studies on amyloid filaments. J Histochem Cytochem. 1968;16:673-7. doi: 10.1177/16.11.673. PubMed PMID: 5723775.
  30. Jiang T, Zhou P. Environment-Induced Silk Fibroin Conformation Based on the Magnetic Resonance Spectroscopy. On Biomimetics. 2011:357. doi: 10.5772/18479.
  31. Sattarahmady N, Vais RD, Heli H. Fibroin nanofibrils as an electrode material for electrical double-layer biosupercapacitor applications. Journal of Applied Electrochemistry. 2015;45:577-83. doi: 10.1007/s10800-015-0812-5.
  32. Pilkington SM, Roberts SJ, Meade SJ, Gerrard JA. Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnol Prog. 2010;26:93-100. doi: 10.1002/btpr.309. PubMed PMID: 19918761.
  33. Domigan LJ, Healy JP, Meade SJ, Blaikie RJ, Gerrard JA. Controlling the dimensions of amyloid fibrils: toward homogenous components for bionanotechnology. Biopolymers. 2012;97:123-33. doi: 10.1002/bip.21709. PubMed PMID: 21858783.
  34. Zhang L, Li N, Gao F, Hou L, Xu Z. Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J Am Chem Soc. 2012;134:11326-9. doi: 10.1021/ja302959e. PubMed PMID: 22742927.
  35. Andersson BV, Skoglund C, Uvdal K, Solin N. Preparation of amyloid-like fibrils containing magnetic iron oxide nanoparticles: effect of protein aggregation on proton relaxivity. Biochem Biophys Res Commun. 2012;419:682-6. doi: 10.1016/j.bbrc.2012.02.077. PubMed PMID: 22382020.
  36. Li C, Adamcik J, Mezzenga R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol. 2012;7:421-7. doi: 10.1038/nnano.2012.62. PubMed PMID: 22562038.
  37. Sattarahmady N, Moosavi-Movahedi AA, Habibi-Rezaei M, Ahmadian S, Saboury AA, Heli H, et al. Detergency effects of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydrate research. 2008;343(13):2229-34. doi: 10.1016/j.carres.2008.04.036. PMID: 18513709.
  38. Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol. 2000;130:88-98. doi: 10.1006/jsbi.2000.4221. PubMed PMID: 10940217.
  39. Domigan LJ, Healy JP, Meade SJ, Blaikie RJ, Gerrard JA. Controlling the dimensions of amyloid fibrils: toward homogenous components for bionanotechnology. Biopolymers. 2012;97:123-33. doi: 10.1002/bip.21709. PubMed PMID: 21858783.
  40. Hu Y, Zhang Q, You R, Wang L, Li M. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Advances in Materials Science and Engineering. 2012;2012. doi: 10.1155/2012/185905.
  41. Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed. 2004;15:851-64. doi: 10.1163/1568562041271075. PubMed PMID: 15318796.
  42. Rahi A, Sattarahmady N, Heli H. An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal Biochem. 2016;510:11-7. doi: 10.1016/j.ab.2016.07.012. PubMed PMID: 27423961.
  43. Sattarahmady N, Heli H. A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. Journal of Experimental Nanoscience. 2012;7:529-46.
  44. Mousavy SJ, Riazi GH, Kamarei M, Aliakbarian H, Sattarahmady N, Sharifizadeh A, et al. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol. 2009;44:278-85. doi: 10.1016/j.ijbiomac.2009.01.001. PubMed PMID: 19263507.
  45. Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC, Carver JA. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg Med Chem Lett. 2013;23:6336-40. doi: 10.1016/j.bmcl.2013.09.071. PubMed PMID: 24157371.
  46. Liu J, Tang C-H. Heat-induced fibril assembly of vicilin at pH 2.0: Reaction kinetics, influence of ionic strength and protein concentration, and molecular mechanism. Food research international. 2013;51:621-32. doi: 10.1016/j.foodres.2012.12.049.
  47. Takai E, Uda K, Matsushita S, Shikiya Y, Yamada Y, Shiraki K, et al. Cysteine inhibits amyloid fibrillation of lysozyme and directs the formation of small worm-like aggregates through non-covalent interactions. Biotechnol Prog. 2014;30:470-8. doi: 10.1002/btpr.1866. PubMed PMID: 24399764.
  48. Leung WH, Zou L, Lo WH, Chan PH. An Amyloid-Fibril-Based Colorimetric Nanosensor for Rapid and Sensitive Chromium (VI) Detection. ChemPlusChem. 2013;78:1440-5. doi: 10.1002/cplu.201300267.
  49. Klunk WE, Pettegrew JW, Abraham DJ. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem. 1989;37:1273-81. doi: 10.1177/37.8.2666510. PubMed PMID: 2666510.
  50. Levine III H. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993;2:404-10.
  51. Inouye H, Kirschner DA. Alzheimer’s beta-amyloid: insights into fibril formation and structure from Congo red binding. Subcell Biochem. 2005;38:203-24. PubMed PMID: 15709480.
  52. Myers JK. Spectroscopic characterization of amyloid fibril formation by lysozyme. J Chem Educ. 2014;91:730-3. doi: 10.1021/ed400400x.
  53. Khurana R, Uversky VN, Nielsen L, Fink AL. Is Congo red an amyloid-specific dye? J Biol Chem. 2001;276:22715-21. doi: 10.1074/jbc.M011499200. PubMed PMID: 11410601.
  54. Juarez J, Taboada P, Mosquera V. Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Biophys J. 2009;96:2353-70. doi: 10.1016/j.bpj.2008.12.3901. PubMed PMID: 19289061.PubMed PMCID: PMC2907680.
  55. Pandey NK, Ghosh S, Dasgupta S. Fibrillation in human serum albumin is enhanced in the presence of copper(II). J Phys Chem B. 2010;114:10228-33. doi: 10.1021/jp103876p. PubMed PMID: 20684647.
  56. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci. 2000;9:1960-7. doi: 10.1110/ps.9.10.1960. PubMed PMID: 11106169. PubMed PMCID: PMC2144465.
  57. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry. 2001;40:6036-46. doi: 10.1021/bi002555c.PubMed PMID: 11352739.
  58. Domigan LJ, Healy JP, Meade SJ, Blaikie RJ, Gerrard JA. Controlling the dimensions of amyloid fibrils: Toward homogenous components for bionanotechnology. Biopolymers. 2012;97:123-33. doi: 10.1002/bip.21709.