Document Type: Original Research

Authors

1 PhD, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia

2 PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132, West Java, Indonesia

3 MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132, West Java, Indonesia

4 PhD, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

5 PhD, Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA

Abstract

Background: It is necessary to have an automated noise measurement system working accurately to optimize dose in computerized tomography (CT) examinations.
Objective: This study aims to develop an algorithm to automate noise measurement that can be implemented in CT images of all body regions.
Materials and Methods: In this retrospective study, our automated noise measurement method consists of three steps as follows: the first is segmenting the image of the patient. The second is developing a standard deviation (SD) map by calculating the SD value for each pixel with a sliding window operation. The third step is estimating the noise as the smallest SD from the SD map. The proposed method was applied to the images of a homogenous phantom and a full body adult anthropomorphic phantom, and retrospectively applied to 27 abdominal images of patients.
Results: For a homogeneous phantom, the noises calculated using our proposed and previous algorithms have a linear correlation with R2 = 0.997. It is found that the noise magnitude closely follows the magnitude of the water equivalent diameter (Dw) in all body regions. The proposed algorithm is able to distinguish the noise magnitude due to variations in tube currents and different noise suppression techniques such as strong, standard, mild, and weak ones in a reconstructed image using the AIDR 3D algorithm.
Conclusion: An automated noise calculation has been proposed and successfully implemented in all body regions. It is not only accurate and easy to implement but also not influenced by the subjectivity of user.

Keywords

  1. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289-96. doi: 10.2214/ajr.176.2.1760289. PubMed PMID: 11159059.
  2. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. doi: 10.1136/bmj.f2360. PubMed PMID: 23694687. PubMed PMCID: PMCPMC3660619.
  3. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167:700-7. doi: 10.1001/jamapediatrics.2013.311. PubMed PMID: 23754213. PubMed PMCID: PMCPMC3936795.
  4. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499-505. doi: 10.1016/S0140-6736(12)60815-0. PubMed PMID: 22681860. PubMed PMCID: PMCPMC3418594.
  5. Kalender WA. Dose in x-ray computed tomography. Phys Med Biol. 2014;59:R129-50. doi: 10.1088/0031-9155/59/3/R129. PubMed PMID: 24434792.
  6. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230:619-28. doi: 10.1148/radiol.2303021726. PubMed PMID: 14739312.
  7. Larson DB. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method. Pediatr Radiol. 2014;44 Suppl 3:501-5. doi: 10.1007/s00247-014-3077-y. PubMed PMID: 25304711.
  8. Verdun F, Meuli R, Bucher G, Noel A, Stines J, Schnyder P, et al. Dose and image quality characterisation of CT units. Radiation Protection Dosimetry. 2000;90:193-6. doi: 10.1093/oxfordjournals.rpd.a033117.
  9. Goldman LW. Principles of CT: radiation dose and image quality. J Nucl Med Technol. 2007;35:213-25. doi: 10.2967/jnmt.106.037846. PubMed PMID: 18006597.
  10. Garayoa J, Castro P. A study on image quality provided by a kilovoltage cone-beam computed tomography. J Appl Clin Med Phys. 2013;14:3888. doi: 10.1120/jacmp.v14i1.3888. PubMed PMID: 23318380. PubMed PMCID: PMCPMC5714052.
  11. Roa AM, Andersen HK, Martinsen AC. CT image quality over time: comparison of image quality for six different CT scanners over a six-year period. J Appl Clin Med Phys. 2015;16:4972. doi: 10.1120/jacmp.v16i2.4972. PubMed PMID: 26103172. PubMed PMCID: PMCPMC5690105.
  12. Larson DB, Malarik RJ, Hall SM, Podberesky DJ. System for verifiable CT radiation dose optimization based on image quality. part II. process control system. Radiology. 2013;269:177-85. doi: 10.1148/radiol.13122321. PubMed PMID: 23784877.
  13. Larson DB, Wang LL, Podberesky DJ, Goske MJ. System for verifiable CT radiation dose optimization based on image quality. part I. Optimization model. Radiology. 2013;269:167-76. doi: 10.1148/radiol.13122320. PubMed PMID: 23784878.
  14. Sanders J, Hurwitz L, Samei E. Patient-specific quantification of image quality: An automated method for measuring spatial resolution in clinical CT images. Med Phys. 2016;43:5330. doi: 10.1118/1.4961984. PubMed PMID: 27782718.
  15. Dodge CT, Tamm EP, Cody DD, Liu X, Jensen CT, Wei W, et al. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction - a phantom study. J Appl Clin Med Phys. 2016;17:511-31. doi: 10.1120/jacmp.v17i2.5709. PubMed PMID: 27074454. PubMed PMCID: PMCPMC5875046.
  16. Hussain FA, Mail N, Shamy AM, Suliman A, Saoudi A. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction. J Appl Clin Med Phys. 2016;17:419-32. doi: 10.1120/jacmp.v17i3.5903. PubMed PMID: 27167261. PubMed PMCID: PMCPMC5690909.
  17. Kijewski MF, Judy PF. The noise power spectrum of CT images. Phys Med Biol. 1987;32:565-75. doi: 10.1088/0031-9155/32/5/003. PubMed PMID: 3588670.
  18. Pineda AR, Tward DJ, Gonzalez A, Siewerdsen JH. Beyond noise power in 3D computed tomography: the local NPS and off-diagonal elements of the Fourier domain covariance matrix. Med Phys. 2012;39:3240-52. doi: 10.1118/1.4705354. PubMed PMID: 22755707. PubMed PMCID: PMCPMC3365918.
  19. Nakahara S, Tachibana M, Watanabe Y. One-year analysis of Elekta CBCT image quality using NPS and MTF. J Appl Clin Med Phys. 2016;17:211-22. doi: 10.1120/jacmp.v17i3.6047. PubMed PMID: 27167279. PubMed PMCID: PMCPMC5690923.
  20. Christianson O, Winslow J, Frush DP, Samei E. Automated Technique to Measure Noise in Clinical CT Examinations. AJR Am J Roentgenol. 2015;205:W93-9. doi: 10.2214/AJR.14.13613. PubMed PMID: 26102424.
  21. Friedman SN, Fung GS, Siewerdsen JH, Tsui BM. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med Phys. 2013;40:051907. doi: 10.1118/1.4800795. PubMed PMID: 23635277. PubMed PMCID: PMCPMC3643984.
  22. Dolly S, Chen HC, Anastasio M, Mutic S, Li H. Practical considerations for noise power spectra estimation for clinical CT scanners. J Appl Clin Med Phys. 2016;17:392-407. doi: 10.1120/jacmp.v17i3.5841. PubMed PMID: 27167257. PubMed PMCID: PMCPMC5690921.
  23. Siewerdsen JH, Cunningham IA, Jaffray DA. A framework for noise-power spectrum analysis of multidimensional images. Med Phys. 2002;29:2655-71. doi: 10.1118/1.1513158. PubMed PMID: 12462733.
  24. Chun M, Choi YH, Kim JH. Automated measurement of CT noise in patient images with a novel structure coherence feature. Phys Med Biol. 2015;60:9107-22. doi: 10.1088/0031-9155/60/23/9107. PubMed PMID: 26561914.
  25. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated Calculation of Water-equivalent Diameter (DW) Based on AAPM Task Group 220. J Appl Clin Med Phys. 2016;17:320-33. doi: 10.1120/jacmp.v17i4.6171. PubMed PMID: 27455491. PubMed PMCID: PMCPMC5690059.
  26. Sarmento S, Mendes B, Gouvea M. Automatic calculation of patient size metrics in computed tomography: What level of computational accuracy do we need? J Appl Clin Med Phys. 2018;19:218-27. doi: 10.1002/acm2.12240. PubMed PMID: 29265700. PubMed PMCID: PMCPMC5768030.
  27. Christianson O, Li X, Frush D, Samei E. Automated size-specific CT dose monitoring program: assessing variability in CT dose. Med Phys. 2012;39:7131-9. doi: 10.1118/1.4761871. PubMed PMID: 23127104.
  28. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. A fully automated calculation of size-specific dose estimates (SSDE) in thoracic and head CT examinations. J Phys Conf Ser. 2016;694:012030. doi: 10.1088/1742-6596/694/1/012030.
  29. Committee ADX-R. Specification and acceptance testing of computed tomography scanners. Report no. 39; New York: American Association of Physicists in Medicine; 1993.
  30. Ang WC, Hashim S, Karim MKA, Bahruddin NA, Salehhon N, Musa Y, et al. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure. J Phys Conf Ser. 2017;851:012006. doi: 10.1088/1742-6596/851/1/012006.
  31. Tian X, Samei E. Accurate assessment and prediction of noise in clinical CT images. Med Phys. 2016;43:475. doi: 10.1118/1.4938588. PubMed PMID: 26745940.
  32. Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004;24:1679-91. doi: 10.1148/rg.246045065. PubMed PMID: 15537976.
  33. Anam C, Fujibuchi T, Budi WS, Haryanto F, Dougherty G. An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images. J Appl Clin Med Phys. 2018;19:244-52. doi: 10.1002/acm2.12476. PubMed PMID: 30338920. PubMed PMCID: PMCPMC6236841.
  34. Abadi E, Sanders J, Samei E. Patient-specific quantification of image quality: An automated technique for measuring the distribution of organ Hounsfield units in clinical chest CT images. Med Phys. 2017;44:4736-46. doi: 10.1002/mp.12438. PubMed PMID: 28658516.
  35. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. The Size-Specific Dose Estimate (Ssde) for Truncated Computed Tomography Images. Radiat Prot Dosimetry. 2017;175:313-20. doi: 10.1093/rpd/ncw326. PubMed PMID: 27885082.
  36. Anam C, Arif I, Haryanto F, et al. A simplified method for the water-equivalent diameter calculation to estimate patient dose in CT examinations. Radiat Prot Dosim. 2019;185:42-9. doi: 10.1093/rpd/ncy214. PubMed PMID: 30508150.
  37. Pace E, Borg M. Optimisation of a Paediatric Ct Brain Protocol: A Figure-of-Merit Approach. Radiat Prot Dosimetry. 2018;182:394-404. doi: 10.1093/rpd/ncy078. PubMed PMID: 29788223.