Document Type : Original Research


1 PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran

2 MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

3 PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

4 PhD, PERFORM Center, Preventive Medicine and Personal Health Care Center, Concordia University, Montreal, Quebec, Canada

5 PhD, Medical Pharmaceutical Sciences Research Center (MPRC), the institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran

6 PhD, Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences(TUMS), Tehran, Iran


Background: Functional Magnetic resonance imaging (fMRI) measures the small fluctuation of blood flow happening during task-fMRI in brain regions.
Objective: This research investigated these active, imagery and passive movements in volunteers design to permit a comparison of their capabilities in activating the brain areas.
Material and Methods: In this applied research, the activity of the motor cortex during the right-wrist movement was evaluated in 10 normal volunteers under active, passive, and imagery conditions. T2* weighted, three-dimensional functional images were acquired using a BOLD sensitive gradient-echo EPI (echo planar imaging) sequence with echo time (TE) of 30 ms and repetition time (TR) of 2000 ms. The functional data, which included 248 volumes per subject and condition, were acquired using the blocked design paradigm. The images were analyzed by the SPM12 toolbox, MATLAB software.
Results: The findings determined a significant increase in signal intensity of the motor cortex while performing the test compared to the rest time (p < 0.05). It was also observed that the active areas in hand representation of the motor cortex are different in terms of locations and the number of voxels in different wrist directions. Moreover, the findings showed that the position of active centers in the brain is different in active, passive, and imagery conditions.
Conclusion: Results confirm that primary motor cortex neurons play an essential role in the processing of complex information and are designed to control the direction of movement. It seems that the findings of this study can be applied for rehabilitation studies.


  1. Johnson-Frey SH. Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain Cogn. 2004;55(2):328-31. doi: 10.1016/j.bandc.2004.02.032. PubMed PMID: 15177807.
  2. Kaneko F, Murakami T, Onari K, Kurumadani H, Kawaguchi K. Decreased cortical excitability during motor imagery after disuse of an upper limb in humans. Clin Neurophysiol. 2003;114(12):2397-403. doi: 10.1016/s1388-2457(03)00245-1. PubMed PMID: 14652100.
  3. Jeannerod, M. The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences. 1994;17(2):187-202. doi: 10.1017/S0140525X00034026.
  4. Jeannerod M, Frak V. Mental imaging of motor activity in humans. Curr Opin Neurobiol. 1999;9(6):735-9. doi: 10.1016/s0959-4388(99)00038-0. PubMed PMID: 10607647.
  5. Li M, Liu Y, Wu Y, Liu S, Jia J, Zhang L. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training. Int J Neurosci. 2014;124(6):403-15. doi: 10.3109/00207454.2013.850082. PubMed PMID: 24079396.
  6. Munzert J, Zentgraf K, Stark R, Vaitl D. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Exp Brain Res. 2008;188(3):437-44. doi: 10.1007/s00221-008-1376-y. PubMed PMID: 18425505.
  7. Decety J, Jeannerod M. Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res. 1995;72(1-2):127-34. doi: 10.1016/0166-4328(96)00141-6. PubMed PMID: 8788865.
  8. Kranczioch C, Mathews S, Dean PJ, Sterr A. On the equivalence of executed and imagined movements: evidence from lateralized motor and nonmotor potentials. Hum Brain Mapp. 2009;30(10):3275-86. doi: 10.1002/hbm.20748. PubMed PMID: 19253343.
  9. Szameitat AJ, Shen S, Sterr A. Effector-dependent activity in the left dorsal premotor cortex in motor imagery. Eur J Neurosci. 2007;26(11):3303-8. doi: 10.1111/j.1460-9568.2007.05920.x. PubMed PMID: 18005067.
  10. Szameitat AJ, Shen S, Sterr A. Motor imagery of complex everyday movements. An fMRI study. NeuroImage. 2007;34(2):702-13. doi:10.1016/j.neuroimage.2006.09.033.
  11. Porro CA, Francescato MP, Cettolo V, Diamond ME, et al. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci. 1996;16(23):7688-98. PubMed PMID: 8922425. PubMed PMCID: PMC6579073.
  12. Lotze M, Halsband U. Motor imagery. J Physiol Paris. 2006;99(4-6):386-95. PubMed PMID: 16716573. doi: 10.1016/j.jphysparis.2006.03.012.
  13. Braun SM, Beurskens AJ, Borm PJ, Schack T, Wade DT. The effects of mental practice in stroke rehabilitation: a systematic review. Arch Phys Med Rehabil. 2006;87(6):842-52. doi: 10.1016/j.apmr.2006.02.034. PubMed PMID: 16731221.
  14. Cramer SC, Lastra L, Lacourse MG, Cohen MJ. Brain motor system function after chronic, complete spinal cord injury. Brain. 2005;128(12):2941-50. doi: 10.1093/brain/awh648. PubMed PMID: 16246866.
  15. Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Effects of motor imagery training after chronic, complete spinal cord injury. Experimental Brain Research. 2007;177(2):233-42. doi: 10.1007/s00221-006-0662-9.
  16. Feltz DL, Landers DM. The effects of mental practice on motor skill learning 17.and performance: a meta-analysis. J Sport Psychol. 1983;5:25-57.
  17. Szynkiewicz SH, et al. Motor Imagery Practice and Increased Tongue Strength: A Case Series Feasibility Report. Journal of Speech, Language, and Hearing Research. 2019;62(6):1676-84. doi: 10.1044/2019_JSLHR-S-18-0128.
  18. Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation. 2001;82(8):1133-41. doi: 10.1053/apmr.2001.24286.
  19. Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage. 2003;20(2):1171-80. doi: 10.1016/S1053-8119(03)00369-0.
  20. Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Research Reviews. 2009;60(2):306-26. doi: 10.1016/j.brainresrev.2008.12.024.
  21. Dechaumont-Palacin S, Marque P, De Boissezon X, et al. Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study. Neurorehabilitation and Neural Repair. 2008;22(2):154-65. doi: 10.1177/1545968307307118.
  22. Lemon RN. Neural control of dexterity: what has been achieved? Experimental Brain Research. 1999;128(1-2):6-12. doi: 10.1007/s002210050811.
  23. Lemon RN, Porter R. Afferent input to movement-related precentral neurones in conscious monkeys. Proceedings of the Royal Society of London. Proc R Soc Lond B Biol Sci. 1976;194(1116):313-39. PubMed PMID: 11491.
  24. Naito E, Roland PE, Ehrsson HH. I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron. 2002;36(5):979-88. doi: 10.1016/S0896-6273(02)00980-7.
  25. Terumitsu M, Ikeda K, Kwee IL, Nakada T. Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study. Neuroreport. 2009;20(7):679-83. doi: 10.1097/WNR.0b013e32832a1820.
  26. Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H. Brain structures related to active and passive finger movements in man. Brain. 1999;122(10):1989-97. doi: 10.1093/brain/122.10.1989.
  27. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology. 2006;19(1):84-90. doi: 10.1097/
  28. Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor control and learning: A behavioral emphasis. Human kinetics; 2018.
  29. Stoykov ME, Corcos DM, Madhavan S. Movement-based priming: clinical applications and neural mechanisms. Journal of Motor Behavior. 2017;49(1):88-97. doi: 10.1080/00222895.2016.1250716.
  30. Lewis GN, Byblow WD. The effects of repetitive proprioceptive stimulation on corticomotor representation in intact and hemiplegic individuals. Clinical Neurophysiology. 2004;115(4):765-73. doi: 10.1016/j.clinph.2003.11.014.
  31. Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience. 2010;11(4):264-74. doi: 10.1038/nrn2805.
  32. Roosink M, Zijdewind I. Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation. Behavioural Brain Research. 2010;213(1):35-41. doi: 10.1016/j.bbr.2010.04.027.
  33. Jalalvandi M, Riahi Alam N, Sharini H, Hashemi H, Kohzad S. Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS). Iranian Journal of Medical Physics. 2018;15(Special Issue-12th. Iranian Congress of Medical Physics):152. doi: 10.22038/IJMP.2018.12653.
  34. Celnik P, Webster B, Glasser DM, Cohen LG. Effects of action observation on physical training after stroke. Stroke. 2008;39(6):1814-20. doi: 10.1161/STROKEAHA.107.508184.
  35. Clark S, Tremblay F, Ste-Marie D. Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions. Neuropsychologia. 2004;42(1):105-12. doi: 10.1016/S0028-3932(03)00144-1.
  36. Filimon F, Nelson JD, Hagler DJ, Sereno MI. Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage. 2007;37(4):1315-28. doi: 10.1016/j.neuroimage.2007.06.008.
  37. Iseki K, Hanakawa T, Shinozaki J, Nankaku M, Fukuyama H. Neural mechanisms involved in mental imagery and observation of gait. Neuroimage. 2008;41(3):1021-31. doi: 10.1016/j.neuroimage.2008.03.010.
  38. Wang C, Wai Y, Weng Y, Yu J, Wang J. The cortical modulation from the external cues during gait observation and imagination. Neuroscience Letters. 2008;443(3):232-5. doi: 10.1016/j.neulet.2008.07.084.
  39. Jalalvandi M, Sharini H, Naderi Y, Alam NR. Assessment of Brain Cortical Activation in Passive Movement during Wrist Task Using Functional Near Infrared Spectroscopy (fNIRS). Frontiers in Biomedical Technologies. 2019;6(2):99-105. doi: 10.18502/fbt.v6i2.1691.
  40. Piefke M, Kramer K, Korte M, Schulte-Rüther M, Korte JM, Wohlschläger AM, Weber J, Shah NJ, Huber W, Fink GR. Neurofunctional modulation of brain regions by distinct forms of motor cognition and movement features. Human Brain Mapp. 2009;30(2):432-51. doi: 10.1002/hbm.20514.
  41. Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. Neuroimage. 2003;20(2):1052-63. doi: 10.1016/S1053-8119(03)00435-X.
  42. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, et al. Automated Talairach atlas labels for functional brain mapping. Human Brain Mapp. 2000;10(3):120-31. doi: 10.1002/1097-0193(200007)10. PubMed PMID: 10912591.
  43. Brett M, Christoff K, Cusack R, Lancaster J. Using the Talairach atlas with the MNI template. Neuroimage. 2001;13(6):85. doi: 10.1016/S1053-8119(01)91428-4.
  44. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience. 1982;2(11):1527-37. doi: 10.1523/JNEUROSCI.02-11-01527.1982.
  45. Kakei S, Hoffman DS, Strick PL. Muscle and movement representations in the primary motor cortex. Science. 1999;285(5436):2136-9. doi: 10.1126/science.285.5436.2136.
  46. Caminiti R, Johnson PB, Galli C, Ferraina S, Burnod Y. Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. Journal of Neuroscience. 1991;11(5):1182-97. doi: 10.1523/JNEUROSCI.11-05-01182.1991.
  47. Kakei S, Hoffman DS, Strick PL. Direction of action is represented in the ventral premotor cortex. Nature Neuroscience. 2001;4(10):1020-5. doi: 10.1038/nn726.
  48. Oghabian MA, Khosravi HR, Ghiasinejad M, Riahi Alam N. Functional Magnetic Resonance Imaging of Motor Cortex Stimulation Induced by Right Thumb Movement Using 1.5 Tesla Routine Mri System. Jundishapur Scientific Medical Journal. 2003:9-17.
  49. Fortier PA, Kalaska JF, Smith AM. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. Journal of Neurophysiology. 1989;62(1):198-211. doi: 10.1152/jn.1989.62.1.198.
  50. Cowper-Smith CD, Lau EY, Helmick CA, Eskes GA, Westwood DA. Neural coding of movement direction in the healthy human brain. PloS One. 2010;5(10):e13330. doi: 10.1371/journal.pone.0013330.
  51. Eisenberg M, Shmuelof L, Vaadia E, Zohary E. Functional organization of human motor cortex: directional selectivity for movement. Journal of Neuroscience. 2010;30(26):8897-905. doi: 10.1523/JNEUROSCI.0007-10.2010.