Document Type: Review Article


1 PhD, Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Science, Kerman, Iran

2 PhD, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland

3 PhD, Bevelacqua Resources, Richland, Washington, United States

4 PhD, Department of Immunology, School of Medicine, Kerman University of Medical Science, Kerman, Iran

5 PhD, Departments of Radiology and Physics, University of British Columbia, Vancouver BC, Canada

6 PhD, Department of Integrative Oncology, BC Cancer Research Centre, Vancouver BC, Canada

7 PhD, Geneva University Neurocenter, Geneva University, Geneva, Switzerland

8 PhD, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands

9 PhD, Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark

10 MD, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

11 PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran


Physicians and scientists around the world are aggressively attempting to develop effective treatment strategies. The treatment goal is to reduce the fatality rate in 15% to 20% of individuals infected with SARS-CoV-2 who develop severe inflammatory conditions that can lead to pneumonia, and acute respiratory distress syndrome. These conditions are major causes of death in these patients. Convalescent plasma (CP) collected from patients recovered from the novel corona virus disease (COVID-19) has been considered as an effective treatment method for COVID-19. Moreover, low-dose radiation therapy (LDRT) for COVID-19 pneumonia was historically used to treat pneumonia during the first half of the 20th century. The concept of LDRT for COVID-19 pneumonia was first introduced in March 2020. Later scientists from Canada, Spain, United States, Germany and France also confirmed the potential efficacy of LDRT for treatment of COVID-19 pneumonia. The rationale behind introducing LDRT as an effective treatment method for pneumonia in COVID-19 patients is not only due to its anti-inflammatory effect, but also in optimization of the activity of the immune system. Moreover, LDRT, unlike other treatment methods such as antiviral drugs, does not have the key disadvantage of exerting a significant selective pressure on the SARS-CoV-2 virus and hence does not lead to evolution of the virus through mutations. Given these considerations, we believe that a hybrid treatment including both CP and LDRT can trigger synergistic responses that will help healthcare providers in mitigating today’s COVID-19 pandemic.


  1. Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(4):407–12. doi: 10.1016/j.dsx.2020.04.020. PubMed PMID: 32335367. PubMed PMCID: PMC7165108.
  2. Abdollahi H. Less is more: Intelligent intensive care for SARS-CoV-2 based on the imaging data. J Med Imaging Radiat Sci. 2020;51(2):198-9. doi: 10.1016/j.jmir.2020.04.002. PubMed PMID: 32340895. PubMed PMCID: PMC7165288.
  3. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433. PubMed PMID: 32113704. PubMed PMCID: PMC7127067.
  4. Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, Antinori S, Galli M. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38(2):337-42. PubMed PMID: 32202240.
  5. Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, Megawati D, Hayati Z, Wagner AL, Mudatsir M. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5): 667–73. doi: 10.1016/j.jiph.2020.03.019. PubMed PMID: 32340833. PubMed PMCID: PMC7142680.
  6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3. PubMed PMID: 32171076. PubMed PMCID: PMC7270627.
  7. Gosain R, Abdou Y, Singh A, Rana N, Puzanov I, Ernstoff MS. COVID-19 and cancer: a comprehensive review. Curr Oncol Rep. 2020;22(5):53. doi: 10.1007/s11912-020-00934-7. PubMed PMID: 32385672. PubMed PMCID: PMC7206576.
  8. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. doi: 10.1038/s41564-020-0688-y. PubMed PMID: 32094589. PubMed PMCID: PMC7095430.
  9. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032. PubMed PMID: 32109013. PubMed PMCID: PMC7092819.
  10. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732. doi: 10.1080/22221751.2020.1746199. PubMed PMID: 32196410. PubMed PMCID: PMC7170333.
  11. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi: 10.1038/s41368-020-0074-x. PubMed PMID: 32094336. PubMed PMCID: PMC7039956.
  12. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020;725:138277. doi: 10.1016/j.scitotenv.2020.138277. PubMed PMID: 32278175. PubMed PMCID: PMC7128376.
  13. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-998. doi: 10.1021/acschemneuro.0c00122. PubMed PMID: 32167747. PubMed PMCID: PMC7094171.
  14. Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang Y, et al. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv. 2020. doi: 10.1101/2020.03.24.20042655.
  15. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, Makki S, Rooney KD, Convalescent Plasma Study Group, Nguyen-Van-Tam JS, Beck CR. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211(1):80-90. doi: 10.1093/infdis/jiu396. PubMed PMID: 25030060. PubMed PMCID: PMC4264590.
  16. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. Jama. 2020;323(16):1582-9. doi: 10.1001/jama.2020.4783. PubMed PMID: 32219428. PubMed PMCID: PMC7101507.
  17. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences. 2020;117(17):9490-6. doi: 10.1073/pnas.2004168117.
  18. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, Chen Q, Zhang L, Zhong Q, Zhang X, Zou Y. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest. 2020. doi: 10.1016/j.chest.2020.03.039. PubMed PMID: 32243945. PubMed PMCID: PMC7195335.
  19. US Food and Drug Administration. Donate COVID-19 Plasma. US FDA; 2020.
  20. Brown BL, McCullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus Apher Sci. 2020;59(3):102790. doi: 10.1016/j.transci.2020.102790. PubMed PMID: 32345485. PubMed PMCID: PMC7194745.
  21. Sullivan HC, Roback JD. Convalescent plasma: therapeutic hope or hopeless strategy in the SARS-CoV-2 pandemic. Transfus Med Rev. 2020. doi: 10.1016/j.tmrv.2020.04.001. PubMed PMID: 32359788. PubMed PMCID: PMC7179481.
  22. Calabrese EJ, Dhawan G. How radiotherapy was historically used to treat pneumonia: could it be useful today? Yale J Biol Med. 2013;86(4):555. PubMed PMID: 24348219. PubMed PMCID: PMC3848110.
  23. Ghadimi-Moghadam A, Haghani M, Bevelacqua JJ, Jafarzadeh A, Kaveh-Ahangar A, Mortazavi SMJ, Ghadimi-Moghadam A, Mortazavi SAR. COVID-19 tragic pandemic: concerns over unintentional “directed accelerated evolution” of novel Coronavirus (SARS-CoV-2) and introducing a modified treatment method for ARDS. J Biomed Phys Eng. 2020; 10(2):241–6. doi: 10.31661/jbpe.v0i0.2003-1085. PubMed PMID: 32337192. PubMed PMCID: PMC7166223.
  24. Kirkby C, Mackenzie M. Is low dose radiation therapy a potential treatment for COVID-19 pneumonia? Radiother Oncol. 2020. doi: 10.1016/j.radonc.2020.04.004. PMID: 32342871. PMCID: PMC7194710.
  25. Lara PC, Burgos J, Macias D. Low dose lung radiotherapy for COVID-19 pneumonia. The rationale for a cost-effective anti-inflammatory treatment. Clin Transl Radiat Oncol. 2020;23:27-9. doi: 10.1016/j.ctro.2020.04.006. PubMed PMID: 32373721. PubMed PMCID: PMC7193092.
  26. Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, Calabrese EJ. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol. 2020 ;147:212-6. doi: 10.1016/j.radonc.2020.05.002. PubMed PMID: 32437820. PubMed PMCID: PMC7206445.
  27. Rödel F, Arenas M, Ott OJ, Fournier C, Georgakilas AG, Tapio S, Trott KR, Gaipl US. Low-dose radiation therapy for COVID-19 pneumopathy: what is the evidence? Strahlenther Onkol. 2020;1-4. doi: 10.1007/s00066-020-01635-7. doi: 10.1007/s00066-020-01635-7. PubMed PMID: 32388805. PubMed PMCID: PMC7211051.
  28. Cosset JM, Deutsch É, Bazire L, Mazeron JJ, Chargari C. Irradiation pulmonaire à faible dose pour l’orage de cytokines du COVID-19: pourquoi pas? Cancer Radiother. 2020;24(3):179-81. doi: 10.1016/j.canrad.2020.04.003. PubMed PMID: 32389579. PubMed PMCID: PMC7252150.
  29. Hekim N, Cetin Z, Nikitaki Z, Cort A, Saygili EI. Radiation triggering immune response and inflammation. Cancer Lett. 2015;368(2):156-63. doi: 10.1016/j.canlet.2015.04.016. PubMed PMID: 25911239.
  30. Zhang QF, Li YW, Liu ZH, Chen QL. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae. Aquat Toxicol. 2016;181:76-85. doi: 10.1016/j.aquatox.2016.10.029. PubMed PMID: 27821350.
  31. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020:1-6. doi: 10.1007/s12250-020-00207-4. PubMed PMID: 32125642. PubMed PMCID: PMC7090474.