Document Type : Original Research

Authors

1 MSc, Department of Electrical, Iran University of Science and Technology, Tehran, Iran

2 PhD, Department of Electrical, Iran University of Science and Technology, Tehran, Iran

10.31661/jbpe.v0i0.1112

Abstract

Background: Cardiac arrhythmias are considered as one of the most serious health conditions; therefore, accurate and quick diagnosis of these conditions is highly paramount for the electrocardiogram (ECG) signals. Moreover, are rather difficult for the cardiologists to diagnose with unaided eyes due to a close similarity of these signals in the time domain.
Objective: In this paper, an image-based and machine learning method were presented in order to investigate the differences between the three cardiac arrhythmias of VF, VT, SVT and the normal signal.
Material and Methods: In this simulation study, the ECG data used are collected from 3 databases, including Boston Beth University Arrhythmias Center, Creighton University, and MIT-BIH. The proposed algorithm was implemented using MATLAB R2015a software and its simulation. At first, the signal is transmitted to the state space using an optimal time delay. Then, the optimal delay values are obtained using the particle swarm optimization algorithm and normalized mutual information criterion. Furthermore, the result is considered as a binary image. Then, 19 features are extracted from the image and the results are presented in the multilayer perceptron neural network for the purpose of training and testing.
Results: In order to classify N-VF, VT-SVT, N-SVT, VF-VT, VT-N-VF, N-SVT-VF, VT-VF-SVT and VT-VF-SVT-N in the conducted experiments, the accuracy rates were determined at 99.5%, 100%, 94.98%, 100%,100%, 100%, 99.5%, 96.5% and 95%, respectively.
Conclusion: In this paper, a new approach was developed to classify the abnormal signals obtained from an ECG such as VT, VF, and SVT compared to a normal signal. Compared to Other related studies, our proposed system significantly performed better.

Keywords

  1. Theodoridis S, Koutroumbas K. Pattern recognition 2003. Elsevier; 2009.
  2. Riasi A, Mohebbi M, editors. Prediction of ventricular tachycardia using morphological features of ECG signal. The International Symposium on Artificial Intelligence and Signal Processing (AISP); IEEE; 2015. p. 170-5. doi: 10.1109/aisp.2015.7123515.
  3. Kelly BB, Fuster V. Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. Washington: National Academies Press; 2010.
  4. Dantas AP, Jimenez-Altayo F, Vila E. Vascular aging: facts and factors. Front Physiol. 2012;3:325. doi: 10.3389/fphys.2012.00325. PubMed PMID: 22934073. PubMed PMCID: PMC3429093.
  5. Goldschlager N, Goldman M. Effects of drugs and electrolytes on the electrocardiogram. Principles of Clinical Electrocardiography Appleton and Lange, East Norwalk. 1989:256-71.
  6. Kolettis TM. Coronary artery disease and ventricular tachyarrhythmia: pathophysiology and treatment. Curr Opin Pharmacol. 2013;13:210-7. doi: 10.1016/j.coph.2013.01.001. PubMed PMID: 23357129.
  7. Joo S, Huh S-J, Choi K-J, editors. A predictor for ventricular tachycardia based on heart rate variability analysis. IEEE Biomedical Circuits and Systems Conference (BioCAS); San Diego, CA, USA: IEEE; 2011. p. 409-411. doi: 10.1109/BioCAS.2011.6107814.
  8. Li Q, Rajagopalan C, Clifford GD. Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng. 2014;61:1607-13. doi: 10.1109/TBME.2013.2275000. PubMed PMID: 23899591.
  9. Li Y, Pang Y, Wang J, Li X. Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing. 2018;314:336-46. doi: 10.1016/j.neucom.2018.06.068.
  10. Thakor NV, Zhu YS, Pan KY. Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans Biomed Eng. 1990;37:837-43. doi: 10.1109/10.58594. PubMed PMID: 2227970.
  11. Chen S, Thakor NV, Mower MM. Ventricular fibrillation detection by a regression test on the autocorrelation function. Med Biol Eng Comput. 1987;25:241-9. doi: 10.1007/bf02447420. PubMed PMID: 3329694.
  12. Zhang XS, Zhu YS, Thakor NV, Wang ZZ. Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans Biomed Eng. 1999;46:548-55. doi: 10.1109/10.759055. PubMed PMID: 10230133.
  13. Barro S, Ruiz R, Cabello D, Mira J. Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system. J Biomed Eng. 1989;11:320-8. doi: 10.1016/0141-5425(89)90067-8. PubMed PMID: 2755113.
  14. Addison PS, Watson JN, Clegg GR, Holzer M, Sterz F, Robertson CE. Evaluating arrhythmias in ECG signals using wavelet transforms. IEEE Eng Med Biol Mag. 2000;19:104-9. doi: 10.1109/51.870237. PubMed PMID: 11016036.
  15. Alonso-Atienza F, Morgado E, Fernandez-Martinez L, Garcia-Alberola A, Rojo-Alvarez JL. Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng. 2014;61:832-40. doi: 10.1109/TBME.2013.2290800. PubMed PMID: 24239968.
  16. Zhou SH, Rautaharju PM, Calhoun HP, editors. Selection of a reduced set of parameters for classification of ventricular conduction defects by cluster analysis. Proceedings of Computers in Cardiology Conference; London, UK: IEEE; 1993. p. 879-82. doi: 10.1109/CIC.1993.378298.
  17. Afonso VX, Tompkins WJ. Detecting ventricular fibrillation. IEEE Eng Med Biol Mag. 1995;14:152-9. doi: 10.1109/51.376752 .
  18. Ham FM, Han S. Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE Trans Biomed Eng. 1996;43:425-30. doi: 10.1109/10.486263. PubMed PMID: 8626192.
  19. Finelli CJ. The time-sequenced adaptive filter for analysis of cardiac arrhythmias in intraventricular electrograms. IEEE Trans Biomed Eng. 1996;43:811-9. doi: 10.1109/10.508543. PubMed PMID: 9216153.
  20. Golrizkhatami Z, Acan A. ECG classification using three-level fusion of different feature descriptors. Expert Systems with Applications. 2018;114:54-64. doi: 10.1016/j.eswa.2018.07.030.
  21. Dong X, Wang C, Si W. ECG beat classification via deterministic learning. Neurocomputing. 2017;240:1-12. doi: 10.1016/j.neucom.2017.02.056.
  22. Amann A, Tratnig R, Unterkofler K. Detecting ventricular fibrillation by time-delay methods. IEEE Trans Biomed Eng. 2007;54:174-7. doi: 10.1109/TBME.2006.880909. PubMed PMID: 17260872.
  23. Sarvestani RR, Boostani R, Roopaei M. VT and VF classification using trajectory analysis. Nonlinear Analysis: Theory, Methods & Applications. 2009;71:e55-e61. doi: 10.1016/j.na.2008.10.015.
  24. Lloyd MA, Murphy JG. Mayo Clinic Cardiology: Board Review Questions and Answers. CRC Press; 2007. doi: 10.1201/b14443.
  25. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215-20. PubMed PMID: 10851218.
  26. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena. 1997;110:43-50. doi: 10.1016/s0167-2789(97)00118-8.
  27. Rafal R, Pawel L, Krzysztof K, Bogdan K, Jerzy W. Chatter identification methods on the basis of time series measured during titanium superalloy milling. International Journal of Mechanical Sciences. 2015;99:196-207. doi: 10.1016/j.ijmecsci.2015.05.013.
  28. Rusinek R, Weremczuk A, Kecik K, Warminski J. Dynamics of a time delayed Duffing oscillator. International Journal of Non-Linear Mechanics. 2014;65:98-106.
  29. Roopaei M, Boostani R, Sarvestani RR, Taghavi MA, Azimifar Z. Chaotic based reconstructed phase space features for detecting ventricular fibrillation. Biomedical Signal Processing and Control. 2010;5:318-27. doi: 10.1016/j.bspc.2010.05.003.
  30. Khan A, Rehman S, Abbas M, Ahmad A. On the mutual information of relaying protocols. Physical Communication. 2018;30:33-42. doi: 10.1016/j.phycom.2018.07.005.
  31. Ayatollahi F, Shokouhi SB, Ayatollahi A. A new hybrid particle swarm optimization for multimodal brain image registration. Journal of Biomedical Science and Engineering. 2012;5:153. doi: 10.4236/jbise.2012.54020.
  32. Wachowiak MP, Smolíková R, Zheng Y, Zurada JM, Elmaghraby AS. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation. 2004;8:289-301. doi: 10.1109/tevc.2004.826068.
  33. Öztürk S, Akdemir B. Application of feature extraction and classification methods for histopathological image using GLCM, LBP, LBGLCM, GLRLM and SFTA. Proc Comput Sci. 2018;132:40-6. doi: 10.1016/j.procs.2018.05.057.
  34. Tatar A, Naseri S, Bahadori M, Hezave AZ, Kashiwao T, Bahadori A, et al. Prediction of carbon dioxide solubility in ionic liquids using MLP and radial basis function (RBF) neural networks. Journal of the Taiwan Institute of Chemical Engineers. 2016;60:151-64. doi: 10.1016/j.jtice.2015.11.002.
  35. Ruiz J, Aramendi E, De Gauna SR, Lazkano A, Leturiondo L, Gutierrez J, editors. Distinction of ventricular fibrillation and ventricular tachycardia using cross correlation. Computers in Cardiology; Greece: IEEE; 2003. doi: 10.1109/CIC.2003.1291259.
  36. Li X, Dong Z. Detection and prediction of the onset of human ventricular fibrillation: an approach based on complex network theory. Physical Review E. 2011;84(6):062901. doi: 10.1103/PhysRevE.84.062901. PubMed PMID: 22304137.