Document Type : Correspondence

Authors

1 PhD, Bevelacqua Resources, Richland, Washington 99352, United States

2 MD, PhD, Loyola University Chicago, Edward Hines Jr., VA Hospital, Stritch School of Medicine, Department of Radiation Oncology, Maywood, IL 60153 USA

3 MD, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 MSc, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

5 PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

10.31661/jbpe.v0i0.2005-1115

Abstract

There is a growing interest in examining alterations in telomere length as a reliable biomarker of general health, as well as a marker for predicting later morbidity and mortality. Substantial evidence shows that telomere length is associated with aging; telomere shortening acts as a “counting mechanism” that drives replicative senescence by limiting the mitotic potential of normal (but not malignant) cells. In this Correspondence, we attempt to answer the question of why recently published papers about telomere length alterations increase our uncertainty rather than reduce it. This discussion includes three major research areas regarding telomere length: environmental stressors, aging, and life span. Our review suggests that activation of telomerase activity due to stressors in space might be a double-edged sword with both favorable and unfavorable consequences. The selection of an effect’s consequence must clearly elucidate the experimental conditions as well as associated stressors. In this Correspondence, we attempt to answer the question of why recently published papers about telomere length alterations increase our uncertainty rather than reduce it. The selection of an effect’s consequence must clearly elucidate the experimental conditions as well as associated stressors. Both positive and negative consequences must be clearly addressed in order to bolster the conclusions, as well as identify future research directions.

Keywords

  1. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8(27):45008-19. doi: 10.18632/oncotarget.16726. PubMed PMID: 28410238. PubMed PMCID: PMC5546536.
  2. Victorelli S, Passos JF. Telomeres and cell senescence-size matters not. EBioMedicine. 2017;21:14-20. doi: 10.1016/j.ebiom.2017.03.027.
  3. Sobinoff AP, Pickett HA. Mechanisms that drive telomere maintenance and recombination in human cancers. Current Opinion in Genetics & Development. 2020;60:25-30. doi: 10.1016/j.gde.2020.02.006.
  4. Enlow MB, Kane-Grade F, De Vivo I, Petty CR, Nelson CA. Patterns of change in telomere length over the first three years of life in healthy children. Psychoneuroendocrinology. 2020;115:104602. doi: 10.1016/j.psyneuen.2020.104602.
  5. Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers. 2020;12(3):558. doi: 10.3390/cancers12030558.
  6. Bateson M, Nettle D. Why are there associations between telomere length and behaviour? Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160438. doi: 10.1098/rstb.2016.0438. PubMed PMID: 29335363. PubMed PMCID: PMC5784059.
  7. Thanseem I, Viswambharan V, Poovathinal SA, Anitha A. Is telomere length a biomarker of neurological disorders? Biomarkers in Medicine. 2017;11(9):799-810. doi: 10.2217/bmm-2017-0032.
  8. Zhan Y, Hagg S. Telomere length and cardiovascular disease risk. Curr Opin Cardiol. 2019;34(3):270-4. doi: 10.1097/HCO.0000000000000613.
  9. Danese E, Lippi G. Telomere length: is the future in our “ends”? Ann Transl Med. 2018;6(13):280. doi: 10.21037/atm.2018.06.24. PubMed PMID: 30094266. PubMed PMCID: PMC6064787.
  10. Shvaiko LI, Bazyka KD, Sushko VO, Ilienko IM, Bazyka DA. Lung Function and Telomere Relative Length in Clean-Up Workers of Chornobyl Npp Accident in a Remote Post-Accident Period. Probl Radiac Med Radiobiol. 2019;24:503-15. doi: 10.33145/2304-8336-2019-24-503-515. PubMed PMID: 31841491.
  11. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650. doi: 10.1126/science.aau8650.
  12. Mortazavi SMJ, Cameron JR, Niroomand-Rad A. Adaptive response studies may help choose astronauts for long-term space travel. Advances in Space Research. 2003;31(6):1543-51. doi: 10.1016/S0273-1177(03)00089-9.
  13. Bevelacqua JJ, Mortazavi SMJ. Commentary: human pathophysiological adaptations to the space environment. Frontiers in Physiology. 2018;8:1116. doi: 10.3389/fphys.2017.01116.
  14. Bevelacqua JJ, Welsh J, Mortazavi SMJ. Comments on ‘An overview of space medicine’. British Journal of Anaesthesia. 2018;120(4):874-6. doi: 10.1016/j.bja.2017.12.015.
  15. Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70. doi: 10.1016/s0092-8674(00)81683-9. PubMed PMID: 10647931.
  16. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329-60.
  17. Movahedi A, Mostajaboddavati M, Rajabibazl M, Mirfakhraie R, Enferadi M. Association of telomere length with chronic exposure to ionizing radiation among inhabitants of natural high background radiation areas of Ramsar, Iran. International Journal of Radiation Biology. 2019;95(8):1113-21. doi: 10.1080/09553002.2019.1605460.
  18. Das B, Saini D, Seshadri M. Telomere length in human adults and high level natural background radiation. PloS One. 2009;4(12):e8440. doi:10.1371/journal.pone.0008440.
  19. Bevelacqua JJ, Welsh J, Mortazavi SMJ. Comments on “Association of telomere length with chronic exposure to ionizing radiation among inhabitants of natural high background radiation areas of Ramsar, Iran”. International Journal of Radiation Biology. 2020;96(6):1-2. doi: 10.1080/09553002.2020.1739770.
  20. Bevelacqua JJ. Health physics in the 21st century. John Wiley & Sons; 2008.
  21. Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nature Communications. 2019;10(1):1-4. doi: 10.1038/s41467-019-12664-x.
  22. Mortazavi SMJ, Bevelacqua JJ, Welsh J. Comments on “The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight”. Science. 2019.
  23. Welsh J, Bevelacqua JJ, Keshavarz M, Mortazavi SAR, Mortazavi SMJ. Is Telomere Length a Biomarker of Adaptive Response? Controversial Findings of NASA and Residents of High Background Radiation Areas. J Biomed Phys Eng. 2019;9(3):381-8. doi: 10.31661/JBPE.V9I3JUN.1151. PubMed PMID: 31341884. PubMed PMCID: PMC6613149.
  24. Bevelacqua JJ, Mortazavi SMJ. Comments on “Is telomere shortening reversible? A clue from NASA’s twins mission”. Polymorphism. 2019;3:1-3.
  25. Arbeev KG, Verhulst S, Steenstrup T, Kark JD, Bagley O, et al. Association of Leukocyte Telomere Length With Mortality Among Adult Participants in 3 Longitudinal Studies. JAMA Network Open. 2020;3(2):e200023. doi: 10.1001/jamanetworkopen.2020.0023. PubMed PMID: 32101305. PubMed PMCID: PMC7137690.
  26. Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, et al. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Research. 2005;15(5):603-15. doi: 10.1101/gr.3274805.
  27. Zullo JM, Drake D, Aron L, O’Hern P, Dhamne SC, Davidsohn N, et al. Regulation of lifespan by neural excitation and REST. Nature. 2019;574(7778):359-64. doi: 10.1038/s41586-019-1647-8.